Character Varieties of Generalized Torus Knot Groups (2401.15228v1)
Abstract: Given $\mathbf{n}=(n_{1},\ldots,n_{r})\in\mathbb{N}r$, let $\Gamma_{\mathbf{n}}$ be a group presentable as $\left\langle \gamma_{1},\ldots,\gamma_{k}:|:\gamma_{1}{n_{1}}=\gamma_{2}{n_{2}}=\cdots=\gamma_{r}{n_{r}}\right\rangle. $ If $\gcd(n_i,n_j)=1$ for all $i\not=j$, we say $\Gamma_{\mathbf{n}}$ is a "generalized torus knot group" and otherwise say it is a "generalized torus link group." This definition includes torus knot and link groups ($r=2$), that is, fundamental groups of the complement of a torus knot or link in $S{3}$. Let $G$ be a connected complex reductive affine algebraic group. We show that the $G$-character varieties of generalized torus knot groups are path-connected. We then count the number of irreducible components of the $\mathrm{SL}(2,\mathbb{C})$-character varieties of $\Gamma_{\mathbf{n}}$ when $n_i$ is odd for all $i$.
- Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
- The topology of moduli spaces of free group representations. Math. Ann., 345(2):453–489, 2009.
- Singularities of free group character varieties. Pacific J. Math., 260(1):149–179, 2012.
- Topology of character varieties of Abelian groups. Topology Appl., 173:32–58, 2014.
- Flawed groups and the topology of character varieties. Topology Appl., 341:Paper No. 108756, 2024.
- Homotopy groups of free group character varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17(1):143–185, 2017.
- Bad representations and homotopy of character varieties. Ann. H. Lebesgue, 5:93–140, 2022.
- Geometry of SU(3)SU3\mathrm{SU}(3)roman_SU ( 3 )-character varieties of torus knots, arXiv, 2022.
- Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
- W. B. Raymond Lickorish. An introduction to knot theory, volume 175 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997.
- M. McCrudden. On the n𝑛nitalic_nth root set of an element in a connected semisimple Lie group. Math. Proc. Cambridge Philos. Soc., 86(2):219–225, 1979.
- J. S. Milne. Algebraic groups, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field.
- The SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 )-character varieties of torus knots. Rocky Mountain J. Math., 45(2):583–602, 2015.
- Combinatorial aspects of the character variety of a family of one-relator groups. Topology Appl., 156(14):2376–2389, 2009.
- Geometry of the SL(3,ℂ)SL3ℂ{\rm SL}(3,\mathbb{C})roman_SL ( 3 , blackboard_C )-character variety of torus knots. Algebr. Geom. Topol., 16(1):397–426, 2016.
- Vicente Muñoz. The SL(2,ℂ)SL2ℂ{\rm SL}(2,\mathbb{C})roman_SL ( 2 , blackboard_C )-character varieties of torus knots. Rev. Mat. Complut., 22(2):489–497, 2009.
- R. W. Richardson. Conjugacy classes of n𝑛nitalic_n-tuples in Lie algebras and algebraic groups. Duke Math. J., 57(1):1–35, 1988.
- Adam S. Sikora. Character varieties. Trans. Amer. Math. Soc., 364(10):5173–5208, 2012.
- Robert Steinberg. Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math., (25):49–80, 1965.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.