Papers
Topics
Authors
Recent
2000 character limit reached

Higher-order topology in Fibonacci quasicrystals (2401.14896v1)

Published 26 Jan 2024 in cond-mat.supr-con

Abstract: In crystalline systems, higher-order topology, characterized by topological states of codimension greater than one, typically arises from the mismatch between Wannier centers and atomic sites, leading to filling anomalies. However, this phenomenon is less understood in aperiodic systems, such as quasicrystals, where Wannier centers are not well defined. In this study, we examine Fibonacci chains and squares, a quintessential type of quasicrystal, to investigate their higher-order topological properties. We discover that topological interfacial states, including corner states, can be inherited from their higher-dimensional periodic counterparts, such as the two-dimensional Su-Schrieffer-Heeger model. This finding is validated through numerical simulations of both phononic and photonic Fibonacci quasicrystals by the finite element method, revealing the emergence of topological edge and corner states at interfaces between Fibonacci quasicrystals with differing topologies inherited from their parent systems. Our results not only provide insight into the higher-order topology of quasicrystals but also open avenues for exploring novel topological phases in aperiodic structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Z. Hasan and C. L. Kane, Colloquium : Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  3. A. Bansil, H. Lin, and T. Das, Colloquium : Topological band theory, Rev. Mod. Phys. 88, 021004 (2016).
  4. Y. Hatsugai, Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett. 71, 3697 (1993).
  5. L. Fu and C. L. Kane, Time reversal polarization and a Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT adiabatic spin pump, Phys. Rev. B 74, 195312 (2006).
  6. A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry, Phys. Rev. B 100, 195135 (2019).
  7. M. Ezawa, Topological Switch between Second-Order Topological Insulators and Topological Crystalline Insulators, Phys. Rev. Lett. 121, 116801 (2018a).
  8. W. A. Benalcazar, T. Li, and T. L. Hughes, Quantization of fractional corner charge in Cnsubscript𝐶𝑛{C}_{n}italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-symmetric higher-order topological crystalline insulators, Phys. Rev. B 99, 245151 (2019).
  9. H. Watanabe and H. C. Po, Fractional corner charge of sodium chloride, Phys. Rev. X 11, 041064 (2021).
  10. M. Jung, Y. Yu, and G. Shvets, Exact higher-order bulk-boundary correspondence of corner-localized states, Phys. Rev. B 104, 195437 (2021).
  11. S.-B. Zhang, A. Calzona, and B. Trauzettel, All-electrically tunable networks of majorana bound states, Phys. Rev. B 102, 100503(R) (2020b).
  12. T. E. Pahomi, M. Sigrist, and A. A. Soluyanov, Braiding majorana corner modes in a second-order topological superconductor, Phys. Rev. Research 2, 032068(R) (2020).
  13. F. Liu and K. Wakabayashi, Novel topological phase with a zero berry curvature, Phys. Rev. Lett. 118, 076803 (2017).
  14. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017a).
  15. M. Ezawa, Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices, Phys. Rev. Lett. 120, 026801 (2018b).
  16. F. Liu, H.-Y. Deng, and K. Wakabayashi, Helical topological edge states in a quadrupole phase, Phys. Rev. Lett. 122, 086804 (2019a).
  17. L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases, Phys. Rev. X 9, 011012 (2019).
  18. Z. Lei, Y. Deng, and L. Li, Topological classification of Higher-order topological phases with nested band inversion surfaces, arXiv:2206.11296  (2022).
  19. Z. Song, Z. Fang, and C. Fang, (d−2)𝑑2(d-2)( italic_d - 2 )-dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119, 246402 (2017).
  20. E. Khalaf, Higher-order topological insulators and superconductors protected by inversion symmetry, Phys. Rev. B 97, 205136 (2018).
  21. R. Okugawa, S. Hayashi, and T. Nakanishi, Second-order topological phases protected by chiral symmetry, Phys. Rev. B 100, 235302 (2019).
  22. W. A. Benalcazar and A. Cerjan, Chiral-symmetric higher-order topological phases of matter, Phys. Rev. Lett. 128, 127601 (2022).
  23. R.-X. Zhang, W. S. Cole, and S. Das Sarma, Helical hinge majorana modes in iron-based superconductors, Phys. Rev. Lett. 122, 187001 (2019b).
  24. S. Spurrier and N. R. Cooper, Kane-mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks, Phys. Rev. Res. 2, 033071 (2020).
  25. L. Huang, W. Zhang, and X. Zhang, Moiré quasibound states in the continuum, Phys. Rev. Lett. 128, 253901 (2022).
  26. C. Wang, F. Liu, and H. Huang, Effective model for fractional topological corner modes in quasicrystals, Phys. Rev. Lett. 129, 056403 (2022).
  27. Y. E. Kraus and O. Zilberberg, Topological equivalence between the fibonacci quasicrystal and the harper model, Phys. Rev. Lett. 109, 116404 (2012).
  28. A. Jagannathan, The fibonacci quasicrystal: case study of hidden dimensions and multifractality, Rev. Mod. Phys. 93, 045001 (2021).
  29. A. Panigrahi, V. Juričić, and B. Roy, Projected topological branes, Communications Physics 5, 230 (2022).
  30. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.