Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Holomorphic Retracts (2401.14700v6)

Published 26 Jan 2024 in math.CV

Abstract: The purpose of this article is towards systematically characterizing (holomorphic) retracts of domains of holomorphy; to begin with, bounded balanced pseudoconvex domains $B \subset \mathbb{C}N$. Specifically, we show that every retract of $B$ passing through its center (origin), is the graph of a holomorphic map over a linear subspace of $B$. As for retracts not passing through origin, we obtain the following result: if $B$ is a strictly convex ball and $\rho$ any holomorphic retraction map on $B$ which is submersive at its center, then $Z=\rho(B)$ is the graph of a holomorphic map over a linear subspace of $B$. To deal with a case when $\partial B$ may fail to have sufficiently many extreme points, we consider products of strictly convex balls, with respect to various norms and obtain a complete description of retracts passing through its center. This can be applied to solve a special case of the union problem with a degeneracy, namely: to characterize those Kobayashi corank one complex manifolds $M$ which can be expressed as an increasing union of submanifolds which are biholomorphic to a prescribed homogeneous bounded balanced domain. Results about non-existence of retracts of each possible dimension is established for the simplest non-convex but pseudoconvex domain: the $\ell^q$-ball' for $0<q\<1$; this enables an illustration of applying retracts to establishing biholomorphic inequivalences. To go beyond balanced domains, we then first obtain a complete characterization of retracts of the Hartogs triangle andanalytic complements' thereof. Thereafter, similar characterization results for domains which are neither bounded nor topologically trivial. We conclude with some expositions about retracts of $\mathbb{C}2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: