Papers
Topics
Authors
Recent
2000 character limit reached

A Visual Approach to the Regularity Theory for Fully Nonlinear Elliptic Equations (2401.14638v2)

Published 26 Jan 2024 in math.AP

Abstract: We revisit the regularity theory for uniformly elliptic equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. A. D. Aleksandrov. Certain estimates for the dirichlet problem. Dokl. Akad. Nauk SSSR, 134(5):1001–1004, 1960.
  2. A. D. Alexandrov. The method of normal map in uniqueness problems and estimations for elliptic equations. In Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 2, Ist. Naz. Alta Mat, pages 744–786. Ed. Cremonese, Rome, 1965.
  3. Regularity and stochastic homogenization of fully nonlinear equations without uniform ellipticity. Ann. Probab., 42(6):2558–2594, 2014.
  4. Partial regularity of solutions of fully nonlinear, uniformly elliptic equations. Comm. Pure Appl. Math., 65(8):1169–1184, 2012.
  5. Partial differential equations in the 20th century. Adv. Math., 135(1):76–144, 1998.
  6. Xavier Cabré. Nondivergent elliptic equations on manifolds with nonnegative curvature. Comm. Pure Appl. Math., 50(7):623–665, 1997.
  7. Luis A. Caffarelli. Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2), 130(1):189–213, 1989.
  8. Jeff Calder. Lecture notes on viscosity solutions, 2018. Lecture notes available at the webpage of the author.
  9. An elementary regularity theory of minimal surfaces. Differential Integral Equations, 6(1):1–13, 1993.
  10. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995.
  11. Interior C2,αsuperscript𝐶2𝛼C^{2,\alpha}italic_C start_POSTSUPERSCRIPT 2 , italic_α end_POSTSUPERSCRIPT regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. (9), 82(5):573–612, 2003.
  12. Regularity results for very degenerate elliptic equations. J. Math. Pures Appl. (9), 101(1):94–117, 2014.
  13. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.
  14. Héctor A. Chang-Lara, November 2023. To appear in the Notices Of The American Mathematical Society.
  15. Some free boundary problems recast as nonlocal parabolic equations. Nonlinear Anal., 189:11538, 60, 2019.
  16. Non-convex Hamilton-Jacobi equations with gradient constraints. Nonlinear Anal., 210:Paper No. 112362, 17, 2021.
  17. Boundary regularity for the free boundary in the one-phase problem. In New developments in the analysis of nonlocal operators, volume 723 of Contemp. Math., pages 149–165. Amer. Math. Soc., [Providence], RI, [2019] ©2019.
  18. Hölder regularity for non-variational porous media type equations. J. Differential Equations, 360:347–372, 2023.
  19. Nonlocal minimal surfaces. Comm. Pure Appl. Math., 63(9):1111–1144, 2010.
  20. Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math., 62(5):597–638, 2009.
  21. On the Evans-Krylov theorem. Proc. Amer. Math. Soc., 138(1):263–265, 2010.
  22. Luis A. Caffarelli and Yu Yuan. A priori estimates for solutions of fully nonlinear equations with convex level set. Indiana Univ. Math. J., 49(2):681–695, 2000.
  23. E. De Giorgi. Frontiere Orientate di Misura Minima. Seminario de Matematica della Scuola Normale Superiore de Pisa. Editrice Tecnico Scientifica, Pisa, 1960.
  24. Regularity of the free boundary for the two-phase Bernoulli problem. Invent. Math., 225(2):347–394, 2021.
  25. D. De Silva. Free boundary regularity for a problem with right hand side. Interfaces Free Bound., 13(2):223–238, 2011.
  26. D. De Silva and O. Savin. Almost minimizers of the one-phase free boundary problem. Comm. Partial Differential Equations, 45(8):913–930, 2020.
  27. D. De Silva and O. Savin. Quasi-Harnack inequality. Amer. J. Math., 143(1):307–331, 2021.
  28. Elliptic partial differential equations from an elementary viewpoint, 2023.
  29. Luis Escauriaza. W2,nsuperscript𝑊2𝑛W^{2,n}italic_W start_POSTSUPERSCRIPT 2 , italic_n end_POSTSUPERSCRIPT a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J., 42(2):413–423, 1993.
  30. Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  31. Alessio Figalli. The Monge-Ampère equation and its applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017.
  32. Regularity theory for elliptic PDE, volume 28 of Zurich Lectures in Advanced Mathematics. EMS Press, Berlin, [2022] ©2022.
  33. The Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J., 51(4):997–1016, 1984.
  34. Aleksandrov-Bakelman-Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal., 206(1):111–157, 2012.
  35. Elliptic partial differential equations of second order, volume 224 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
  36. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, second edition, 2011.
  37. Introduction to fully nonlinear parabolic equations, 2012. Lecture notes available at https://hal.science/hal-00798300.
  38. Estimates on elliptic equations that hold only where the gradient is large. J. Eur. Math. Soc. (JEMS), 18(6):1321–1338, 2016.
  39. Shuhei Kitano. ABP maximum principles for fully nonlinear integro-differential equations with unbounded inhomogeneous terms. Partial Differ. Equ. Appl., 1(4):Paper No. 16, 11, 2020.
  40. N. V. Krylov. Lectures on elliptic and parabolic equations in Hölder spaces, volume 12 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996.
  41. Nicolai V. Krylov. Fully nonlinear second order elliptic equations: recent development. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3-4):569–595, 1997. Dedicated to Ennio De Giorgi.
  42. An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR, 245(1):18–20, 1979.
  43. Maximum principles for difference operators. In Partial differential equations and applications, volume 177 of Lecture Notes in Pure and Appl. Math., pages 209–219. Dekker, New York, 1996.
  44. Nam Q. Le. On the Harnack inequality for degenerate and singular elliptic equations with unbounded lower order terms via sliding paraboloids. Commun. Contemp. Math., 20(1):1750012, 38, 2018.
  45. Nam Q. Le. Polynomial decay in W2,ϵsuperscript𝑊2italic-ϵW^{2,\epsilon}italic_W start_POSTSUPERSCRIPT 2 , italic_ϵ end_POSTSUPERSCRIPT estimates for viscosity supersolutions of fully nonlinear elliptic equations. Math. Res. Lett., 27(1):189–207, 2020.
  46. On the parabolic kernel of the Schrödinger operator. Acta Math., 156(3-4):153–201, 1986.
  47. Peter A. Markowich. Applied partial differential equations: a visual approach. Springer, Berlin, 2007.
  48. Connor Mooney. Notes on elliptic partial differential equations, 2012. Lecture notes available at the webpage of the author.
  49. Connor Mooney. Harnack inequality for degenerate and singular elliptic equations with unbounded drift. J. Differential Equations, 258(5):1577–1591, 2015.
  50. Connor Mooney. Notes on parabolic pde. based on informal lecture series at eth zurich, 2017, 2017. Lecture notes available at the webpage of the author.
  51. Connor Mooney. A proof of the Krylov-Safonov theorem without localization. Comm. Partial Differential Equations, 44(8):681–690, 2019.
  52. A. I. Nazarov. The maximum principle of A. D. Aleksandrov. Sovrem. Mat. Prilozh., 29:129–145, 2005.
  53. Louis Nirenberg. On nonlinear elliptic partial differential equations and Hölder continuity. Comm. Pure Appl. Math., 6:103–156; addendum, 395, 1953.
  54. Nonlinear elliptic equations and nonassociative algebras, volume 200 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2014.
  55. Singular solutions of Hessian elliptic equations in five dimensions. J. Math. Pures Appl. (9), 100(6):769–784, 2013.
  56. Fractional Sobolev regularity for fully nonlinear elliptic equations. Comm. Partial Differential Equations, 47(8):1539–1558, 2022.
  57. Ovidiu Savin. Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations, 32(4-6):557–578, 2007.
  58. Ovidiu Savin. Regularity of flat level sets in phase transitions. Ann. of Math. (2), 169(1):41–78, 2009.
  59. James Serrin. On the Harnack inequality for linear elliptic equations. J. Analyse Math., 4:292–308, 1955/56.
  60. Luis Silvestre. Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J., 55(3):1155–1174, 2006.
  61. Real analysis, volume 3 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and Hilbert spaces.
  62. Boundary regularity for viscosity solutions of fully nonlinear elliptic equations. Comm. Partial Differential Equations, 39(9):1694–1717, 2014.
  63. Regularity for parabolic integro-differential equations with very irregular kernels. Anal. PDE, 9(3):727–772, 2016.
  64. Eduardo V. Teixeira. Regularity theory for nonlinear diffusion processes. Notices Amer. Math. Soc., 67(4):475–483, 2020.
  65. Kaising Tso. On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations. Comm. Partial Differential Equations, 10(5):543–553, 1985.
  66. Lihe Wang. On the regularity theory of fully nonlinear parabolic equations. I. Comm. Pure Appl. Math., 45(1):27–76, 1992.
  67. Lihe Wang. Compactness methods for certain degenerate elliptic equations. J. Differential Equations, 107(2):341–350, 1994.
  68. Yu Wang. Small perturbation solutions for parabolic equations. Indiana Univ. Math. J., 62(2):671–697, 2013.
  69. Hui Yu. Small perturbation solutions for nonlocal elliptic equations. Comm. Partial Differential Equations, 42(1):142–158, 2017.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.