Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Estimation of on- and off-time distributions in a dynamic Erdős-Rényi random graph (2401.14531v4)

Published 25 Jan 2024 in math.ST, math.PR, and stat.TH

Abstract: In this paper we consider a dynamic Erd\H{o}s-R\'enyi graph in which edges, according to an alternating renewal process, change from present to absent and vice versa. The objective is to estimate the on- and off-time distributions while only observing the aggregate number of edges. This inverse problem is dealt with, in a parametric context, by setting up an estimator based on the method of moments. We provide conditions under which the estimator is asymptotically normal, and we point out how the corresponding covariance matrix can be identified. It is also demonstrated how to adapt the estimation procedure if alternative subgraph counts are observed, such as the number of wedges or triangles.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: