Artificial Precision Timing Array: bridging the decihertz gravitational-wave sensitivity gap with clock satellites (2401.13668v1)
Abstract: Gravitational-wave astronomy has developed enormously over the last decade with the first detections across different frequency bands, but has yet to access $0.1-10$ $\mathrm{Hz}$ gravitational waves. Gravitational waves in this band are emitted by some of the most enigmatic sources, including intermediate-mass binary black hole mergers, early inspiralling compact binaries, and possibly cosmic inflation. To tap this exciting band, we propose the construction of a detector based on pulsar timing principles, the Artificial Precision Timing Array (APTA). We envision APTA as a solar system array of artificial "pulsars"$-$precision-clock-carrying satellites that emit pulsing electromagnetic signals towards Earth or other centrum. In this fundamental study, we estimate the clock precision needed for APTA to successfully detect gravitational waves. Our results suggest that a clock relative uncertainty of $10{-17}$, which is currently attainable, would be sufficient for APTA to surpass LISA's sensitivity in the decihertz band and observe $103-104$ $\mathrm{M}_\odot$ black hole mergers. Future atomic clock technology realistically expected in the next decade would enable the detection of an increasingly diverse set of astrophysical sources, including stellar-mass compact binaries that merge in the LIGO-Virgo-KAGRA band, extreme-mass-ratio inspirals, and Type Ia supernovae. This work opens up a new area of research into designing and constructing artificial gravitational-wave detectors relying on the successful principles of pulsar timing.
- J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- T. Accadia et al. (VIRGO), JINST 7, P03012 (2012).
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
- J. Antoniadis et al., arXiv e-prints , arXiv:2306.16214 (2023), arXiv:2306.16214 [astro-ph.HE] .
- J. Antoniadis et al., Mon. Not. Roy. Astron. Soc. 510, 4873 (2022), arXiv:2201.03980 [astro-ph.HE] .
- P. Amaro-Seoane et al. (LISA), (2017), arXiv:1702.00786 [astro-ph.IM] .
- E. Huerta and J. Gair, Physical Review D 83 (2010), 10.1103/PhysRevD.83.044020.
- B. P. Abbott et al. (LIGO Scientific), Rept. Prog. Phys. 72, 076901 (2009), arXiv:0711.3041 [gr-qc] .
- M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
- S. Kawamura et al., Class. Quant. Grav. 23, S125 (2006).
- M. C. Miller and E. J. M. Colbert, International Journal of Modern Physics D 13, 1 (2004), arXiv:astro-ph/0308402 [astro-ph] .
- J. Samsing, Phys. Rev. D 97, 103014 (2018), arXiv:1711.07452 [astro-ph.HE] .
- J. Samsing and D. J. D’Orazio, Monthly Notices of the Royal Astronomical Society 481, 5445 (2018), https://academic.oup.com/mnras/article-pdf/481/4/5445/26075165/sty2334.pdf .
- C. D. Ott, Classical and Quantum Gravity 26, 063001 (2009), arXiv:0809.0695 [astro-ph] .
- J. W. Armstrong, Living Reviews in Relativity 9, 1 (2006).
- A. Vutha, New Journal of Physics 17, 063030 (2015).
- B. P. Abbott et al., ApJ 848, L12 (2017a), arXiv:1710.05833 [astro-ph.HE] .
- B. P. Abbott et al., ApJ 848, L13 (2017b), arXiv:1710.05834 [astro-ph.HE] .
- A. H. Jaffe and D. C. Backer, ApJ 583, 616 (2003), arXiv:astro-ph/0210148 [astro-ph] .
- L. S. Finn and K. S. Thorne, Phys. Rev. D 62, 124021 (2000a), arXiv:gr-qc/0007074 [gr-qc] .
- P. C. Peters, Phys. Rev. 136, B1224 (1964).
- L. S. Finn and K. S. Thorne, Phys. Rev. D 62, 124021 (2000b), arXiv:gr-qc/0007074 [gr-qc] .
- S. A. Hughes, Phys. Rev. D 61, 084004 (2000), arXiv:gr-qc/9910091 [gr-qc] .
- T. R. Marsh, Classical and Quantum Gravity 28, 094019 (2011), arXiv:1101.4970 [astro-ph.SR] .
- T. M. Tauris, Phys. Rev. Lett. 121, 131105 (2018), arXiv:1809.03504 [astro-ph.SR] .
- C. Ungarelli and A. Vecchio, Phys. Rev. D 63, 064030 (2001).
- A. J. Farmer and E. S. Phinney, Monthly Notices of the Royal Astronomical Society 346, 1197 (2003), https://academic.oup.com/mnras/article-pdf/346/4/1197/18649605/346-4-1197.pdf .
- C. Cutler and D. E. Holz, Physical Review D 80 (2009), 10.1103/physrevd.80.104009.
- T. Nakamura and T. Chiba, Monthly Notices of the Royal Astronomical Society 306, 696 (1999).
- J. J. Condon and S. M. Ransom, Essential Radio Astronomy (2016).
- D. R. Lorimer, Living Reviews in Relativity 11, 8 (2008), arXiv:0811.0762 [astro-ph] .
- R. A. Isaacson, Phys. Rev. 166, 1263 (1968).
- C. Moore, R. Cole, and C. Berry, “Gravitational wave sensitivity curve plotter,” .
- I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).
- X. Deng and L. S. Finn, Monthly Notices of the Royal Astronomical Society 414, 50 (2011).
- E. Marsch, Living Reviews in Solar Physics 3, 1 (2006).
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L10 (2023b), arXiv:2306.16218 [astro-ph.HE] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.