Multi-Dirac and Weyl physics in heavy-fermion systems (2401.13607v1)
Abstract: We have studied multi-Dirac/Weyl systems with arbitrary topological charge n in the presence of a lattice of local magnetic moments. To do so, we propose a multi-Dirac/Weyl Kondo lattice model which is analyzed through a mean-field approach appropriate to the paramagnetic phase. We study both the broken time-reversal and the broken inversion-symmetry Weyl cases. The multi- Dirac and broken-time reversal multi-Weyl cases have similar behavior, which is in contrast to the broken-parity case. For the former, low-energy particle-hole symmetry leads to the emergence of a critical coupling constant below which there is no Kondo quenching, reminiscent of the pseudogap Kondo impurity problem. Away from particle-hole symmetry, there is always Kondo quenching. For the broken inversion symmetry, there is no critical coupling. Depending on the conduction electron filling, Kondo insulator, heavy fermion metal or semimetal phases can be realized. In the last two cases, quasiparticle renormalizations can differ widely between opposite chirality sectors, with characteristic dependences on microscopic parameters that could in principle be detected experimentally.
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- J. E. Moore, Nature 464, 194 (2010).
- B. Bernevig and T. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
- M. Sato and Y. Ando, Reports on Progress in Physics 80, 076501 (2017).
- F. Wilczek, Physics World 19, 22 (2006).
- A. A. Burkov, Nature Materials 15, 1145 (2016).
- B. Yan and C. Felser, Annual Review of Condensed Matter Physics 8, 337 (2017).
- Q. Liu and A. Zunger, Phys. Rev. X 7, 021019 (2017).
- S. Yasui and K. Sudoh, Phys. Rev. C 88, 015201 (2013).
- A. K. Mitchell and L. Fritz, Phys. Rev. B 92, 121109(R) (2015).
- Y. Sun and A. Wang, Journal of Physics: Condensed Matter 29, 435306 (2017).
- S. P. Mukherjee and J. P. Carbotte, Phys. Rev. B 97, 045150 (2018).
- N. Read and D. M. Newns, Journal of Physics C: Solid State Physics 16, 3273 (1983).
- P. Coleman, Phys. Rev. B 28, 5255 (1983).
- A. Auerbach and K. Levin, Phys. Rev. Lett. 57, 877 (1986).
- D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990).
- M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201 (2013).
- G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
- P. S. Riseborough, Adv. Phys. 49, 257 (2000).
- S. Doniach, Physica B+C 91, 231 (1977).
- R. H. Heffner and M. R. Norman, Comm. Condens. Matter Phys. 17, 361 (1996).
- C. R. Cassanello and E. Fradkin, Phys. Rev. B 53, 15079 (1996).
- C. R. Cassanello and E. Fradkin, Phys. Rev. B 56, 11246 (1997).
- A. Polkovnikov, Phys. Rev. B 65, 064503 (2002).
- M. Vojta and R. Bulla, Phys. Rev. B 65, 014511 (2001).
- M. Kirćan and M. Vojta, Phys. Rev. B 69, 174421 (2004).
- M. Vojta and L. Fritz, Phys. Rev. B 70, 094502 (2004).
- L. Fritz and M. Vojta, Phys. Rev. B 70, 214427 (2004).
- K. Chen and C. Jayaprakash, Journal of Physics: Condensed Matter 7, L491 (1995).
- K. Ingersent, Phys. Rev. B 54, 11936 (1996).
- C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254 (1998).
- K. Ingersent and Q. Si, Phys. Rev. Lett. 89, 076403 (2002).
- M. Vojta, Phil. Mag. 86, 1807 (2006).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.