Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Higher equations of motion for boundary Liouville Conformal Field Theory from the Ward identities (2401.13271v2)

Published 24 Jan 2024 in math.PR, math-ph, and math.MP

Abstract: In this document we prove higher equations of motion at the level 2 for boundary Liouville Conformal Field Theory. As a corollary we present a new derivation of the Belavin-Polyakov-Zamolodchikov differential equations. Our method of proof does not rely on the mating of trees machinery but rather exploits the symmetries of the model through the Ward identities it satisfies. To do so we provide a definition of derivatives of the correlation functions with respect to a boundary insertion which was lacking in the existing literature, and introduce a new notion of descendant fields related to these Ward identities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. Ang. Liouville conformal field theory and the quantum zipper. Preprint, arXiv:2301.13200, 2023.
  2. Conformal welding of quantum disks. Electronic Journal of Probability, 28:1–50, 2023.
  3. Integrability of SLE via conformal welding of random surfaces. Communications on Pure and Applied Mathematics,, to appear, 2022.
  4. FZZ formula of boundary Liouville CFT via conformal welding. Journal of the European Mathematical Society, to appear.
  5. Derivation of all structure constants for boundary Liouville CFT. Preprint, arXiv:2305.18266, 2023.
  6. M. Ang and X. Sun. Integrability of the conformal loop ensemble. Preprint, arXiv:2107.01788, 2021.
  7. Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence. Communications in Mathematical Physics, 356:261–283, 2017.
  8. G. Baverez and M. D. Wong. Fusion asymptotics for Liouville correlation functions. Preprint, arXiv:1807.10207, 2018.
  9. G. Baverez and B. Wu. Higher equations of motion at level 2 in Liouville CFT. Preprint, arXiv:2312.13900, 2023.
  10. A. Belavin and V. Belavin. Higher equations of motion in boundary Liouville field theory. JHEP, (2):10, 2010.
  11. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B, 241(2):333 – 380, 1984.
  12. N. Berestycki. An elementary approach to Gaussian multiplicative chaos. Electronic Communications in Probability, 22:1 – 12, 2017.
  13. B. Cerclé. Unit boundary length quantum disk: a study of two different perspectives and their equivalence. ESAIM: PS, 25:433–459, 2021.
  14. B. Cerclé. Three-point correlation functions in the 𝔰⁢𝔩3𝔰subscript𝔩3\mathfrak{sl}_{3}fraktur_s fraktur_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Toda theory II: the formula. Preprint, arXiv:2208.12085, 2022.
  15. B. Cerclé. Three-point correlation functions in the 𝔰⁢𝔩3𝔰subscript𝔩3\mathfrak{sl}_{3}fraktur_s fraktur_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Toda theory I: Reflection coefficients. Probability Theory and Related Fields, https://doi.org/10.1007/s00440-023-01219-3, 2023.
  16. B. Cerclé and Y. Huang. Ward identities in the 𝔰⁢𝔩3𝔰subscript𝔩3\mathfrak{sl}_{3}fraktur_s fraktur_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Toda conformal field theory. Communications in Mathematical Physics, 393:419–475, 2022.
  17. Probabilistic construction of Toda conformal field theories. Annales Henri Lebesgue, 6:31–64, 2023.
  18. Liouville Quantum Gravity on the Riemann Sphere. Communications in Mathematical Physics, 342:869–907, 2016.
  19. Tightness of Liouville first passage percolation for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Publications mathématiques de l’IHÉS, 132:353–403, 2020.
  20. Introduction to the Liouville quantum gravity metric. To appear in the Proceedings of the ICM, 2022.
  21. H. Dorn and H.-J. Otto. Two- and three-point functions in Liouville theory. Nuclear Physics B, 429(2):375 – 388, 1994.
  22. Weak LQG metrics and Liouville first passage percolation. Probability Theory and Related Fields, 178:369–436, 2020.
  23. B. Duplantier and S. Miller, J. Sheffield. Liouville quantum gravity as a mating of trees, volume 427 of Asterisque. SMF, 2021.
  24. Boundary Liouville Field Theory I. Boundary State and Boundary Two-point Function. Preprint, arXiv:0001012, 2000.
  25. Conformal Toda theory with a boundary. JHEP, 12:089, 2010.
  26. Conformal bootstrap in Liouville Theory. To appear in Acta Mathematica, 2020.
  27. Segal’s axioms and bootstrap for Liouville theory. Preprint, arXiv:2112.14859, 2021.
  28. E. Gwynne and J. Miller. Existence and uniqueness of the Liouville quantum gravity metric for γ∈(0,2)𝛾02\gamma\in(0,2)italic_γ ∈ ( 0 , 2 ). Inventiones mathematicae, 223:213–333, 2021.
  29. The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity. The Annals of Probability, 2017.
  30. N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. To appear in Acta Mathematica, 2019.
  31. K. Hosomichi. Bulk boundary propagator in Liouville theory on a disc. JHEP, 11:044, 2001.
  32. Liouville quantum gravity on the unit disk. Ann. Inst. H. Poincaré Probab. Statist., 54(3):1694–1730, 08 2018.
  33. Local Conformal Structure of Liouville Quantum Gravity. Communications in Mathematical Physics, 2018.
  34. Integrability of Liouville theory: proof of the DOZZ formula. Annals of Mathematics, 191(1):81–166, 2020.
  35. J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880–2960, 07 2013.
  36. G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Mathematica, 210(2):319–401, 2013.
  37. J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric. Inventiones mathematicae, 219:75–152, 2020.
  38. J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. Ann. Probab., 49:2732–2829, 2021.
  39. J. Miller and S. Sheffield. Liouville quantum gravity and the Brownian map III: the conformal structure is determined. Probability Theory and Related Fields, 179:1183–1211, 2021.
  40. Simple conformal loop ensembles on Liouville quantum gravity. Ann. Probab., 50(3):905 – 949, 2022.
  41. Y. Nakayama. Liouville field theory — a decade after the revolution. International Journal of Modern Physics A, 19:2771–2930, 2004.
  42. J. Oikarinen. Smoothness of Correlation Functions in Liouville Conformal Field Theory. Ann. Inst. H. Poincaré Probab. Statist., 20:2377–2406, 2019.
  43. A. Polyakov. Quantum Geometry of bosonic strings. Physics Letters B, 103:207:210, 1981.
  44. B. Ponsot and J. Teschner. Boundary Liouville field theory: boundary three-point function. Nuclear Physics B, 622(1):309–327, 2002.
  45. G. Remy. The Fyodorov-Bouchaud formula and Liouville conformal field theory. Duke Math. J., 169(1):177–211, 2020.
  46. G. Remy and T. Zhu. Integrability of boundary Liouville conformal field theory. Communications in Mathematical Physics, 395:179–268, 2022.
  47. R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: A review. Probability Surveys, 11:315 – 392, 2014.
  48. G. Segal. The definition of conformal field theory. Oxford Univ. Press 2004, 2004.
  49. S. Sheffield. Exploration trees and conformal loop ensembles. Duke Mathematical Journal, 147(1):79 – 129, 2009.
  50. S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. The Annals of Probability, 44(5):3474 – 3545, 2016.
  51. S. Sheffield and W. Werner. Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Annals of Mathematics, 176:1827–1917, 2012.
  52. B. Wu. Liouville conformal field theory on Riemann surface with boundaries. Preprint, arXiv:2203.11721, 2022.
  53. A. Zamolodchikov and Al. Zamolodchikov. Conformal bootstrap in Liouville field theory. Nuclear Physics B, 477(2):577–605, 1996.
  54. A. Zamolodchikov and Al. Zamolodchikov. Lectures on Liouville Theory and Matrix Models. URL: http://qft.itp.ac.ru/ZZ.pdf, 2007.
  55. Zamolodchikov, Al. Higher equations of motion in Liouville field theory.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper: