K-motives, Springer Theory and the Local Langlands Correspondence (2401.13052v2)
Abstract: We construct a geometric realization of categories of representations of affine Hecke algebras and split reductive $p$-adic groups via a $K$-motivic Springer theory. We suggest a connection to the coherent Springer theory of Ben-Zvi, Chen, Helm, and Nadler through a categorical Chern character and outline results and conjectures on $K$-motives within the Langlands program. To achieve our results, we introduce a six functor formalism for reduced $K$-motives applicable to linearly reductive stacks and establish formality for categories of Springer $K$-motives. We work within a broader framework of Hecke algebras derived from Springer data. This makes the results applicable, for example, to the ($K$-theoretic) quiver Hecke and Schur algebra. Moreover, we relate our constructions to prior geometric realizations for graded Hecke algebras.
- Jonas Antor “Formality in the Deligne-Langlands Correspondence”, 2023 arXiv: http://arxiv.org/abs/2302.11010
- Ko Aoki “The Weight Complex Functor Is Symmetric Monoidal” In Advances in Mathematics 368, 2020, pp. 107145 DOI: 10.1016/j.aim.2020.107145
- “Equivariant K𝐾Kitalic_K-Theory and Completion” In Journal of Differential Geometry 3.1-2 Lehigh University, 1969, pp. 1–18 DOI: 10.4310/jdg/1214428815
- J. Ayoub “Note Sur Les Opérations de Grothendieck et La Réalisation de Betti” In Journal of the Institute of Mathematics of Jussieu, 2009 DOI: 10.1017/S1474748009000127
- A.A. Beilinson, J. Bernstein and Pierre Deligne “Faisceaux pervers” In Analyse et topologie sur les espaces singuliers. CIRM, 6 - 10 juillet 1981. (Actes du Colloque de Luminy 1981). I, 1982 URL: https://zbmath.org/?q=an%3A0536.14011
- “Between Coherent and Constructible Local Langlands Correspondences”, 2023 arXiv: http://arxiv.org/abs/2302.00039
- “Coherent Springer Theory and the Categorical Deligne-Langlands Correspondence” In Inventiones mathematicae, 2023 DOI: 10.1007/s00222-023-01224-2
- Alexander Beilinson, Victor Ginzburg and Wolfgang Soergel “Koszul Duality Patterns in Representation Theory” In Journal of the American Mathematical Society 9.2, 1996, pp. 473–527 DOI: 10.1090/S0894-0347-96-00192-0
- “Equivariant Sheaves and Functors”, Lecture Notes in Mathematics 1578 Berlin ; New York: Springer-Verlag, 1994
- Mikhail V. Bondarko “Weight Structures vs. t-Structures; Weight Filtrations, Spectral Sequences, and Complexes (for Motives and in General)” In Journal of K-Theory 6.3 Cambridge University Press, 2010, pp. 387–504 DOI: 10.1017/is010012005jkt083
- “On Koszul Duality for Kac-Moody Groups” In Representation Theory 17 American Mathematical Society (AMS), Providence, RI, 2013, pp. 1–98 DOI: 10.1090/S1088-4165-2013-00421-1
- “Étale Motives” In Compositio Mathematica 152.3, 2016, pp. 556–666 DOI: 10.1112/S0010437X15007459
- “Triangulated Categories of Mixed Motives”, Springer Monogr. Math. Cham: Springer, 2019 DOI: 10.1007/978-3-030-33242-6
- “Representation Theory and Complex Geometry” Boston: Birkhäuser Boston, 2010 DOI: 10.1007/978-0-8176-4938-8
- “Quantum K-theoretic Geometric Satake: The SLnsubscriptSL𝑛\operatorname{SL}_{n}roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT Case” In Compositio Mathematica 154.2 London Mathematical Society, 2018, pp. 275–327 DOI: 10.1112/S0010437X17007564
- Frédéric Déglise “Bivariant Theories in Motivic Stable Homotopy” In Documenta Mathematica 23, 2018, pp. 997–1076 DOI: 10.4171/dm/641
- Frédéric Déglise “Orientation Theory in Arithmetic Geometry” In \(K\)-Theory. Proceedings of the International Colloquium, Mumbai, 2016 New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research, 2019, pp. 239–347
- C. De Concini, G. Lusztig and C. Procesi “Homology of the Zero-Set of a Nilpotent Vector Field on a Flag Manifold” In Journal of the American Mathematical Society 1.1 American Mathematical Society, 1988, pp. 15–34 DOI: 10.2307/1990965
- Jens Niklas Eberhardt “K-Motives and Koszul Duality”, 2019 arXiv: http://arxiv.org/abs/1909.11151
- Jens Niklas Eberhardt “Springer Motives” In Proceedings of the American Mathematical Society 149.5, 2021, pp. 1845–1856 DOI: 10.1090/proc/15290
- Jens Niklas Eberhardt “K-Theory Soergel Bimodules”, 2022 arXiv: http://arxiv.org/abs/2208.01665
- Jens Niklas Eberhardt and Catharina Stroppel “Motivic Springer Theory” In Indagationes Mathematicae 33.1, Special Issue to the Memory of T.A. Springer, 2022, pp. 190–217 DOI: 10.1016/j.indag.2021.11.004
- Jens Niklas Eberhardt and Jakob Scholbach “Integral Motivic Sheaves and Geometric Representation Theory” In Advances in Mathematics 412, 2023, pp. 108811 DOI: 10.1016/j.aim.2022.108811
- Jin Fangzhou “Borel–Moore Motivic Homology and Weight Structure on Mixed Motives” In Mathematische Zeitschrift 283.3, 2016, pp. 1149–1183 DOI: 10.1007/s00209-016-1636-7
- Eugen Hellmann “On the Derived Category of the Iwahori-Hecke Algebra”, 2021 DOI: 10.48550/arXiv.2006.03013
- “Vanishing Theorems for the Negative K𝐾Kitalic_K-Theory of Stacks” In Annals of K-Theory 4.3 MSP, 2019, pp. 439–472 DOI: 10.2140/akt.2019.4.439
- Marc Hoyois “The Six Operations in Equivariant Motivic Homotopy Theory” In Advances in Mathematics 305, 2017, pp. 197–279 DOI: 10.1016/j.aim.2016.09.031
- Marc Hoyois “Cdh Descent in Equivariant Homotopy K𝐾Kitalic_K-Theory” In Documenta Mathematica 25, 2020, pp. 457–482 DOI: 10.4171/dm/754
- Marc Hoyois, Sarah Scherotzke and Nicolò Sibilla “Higher Traces, Noncommutative Motives, and the Categorified Chern Character” In Advances in Mathematics 309, 2017, pp. 97–154 DOI: 10.1016/j.aim.2017.01.008
- “A Diagrammatic Approach to Categorification of Quantum Groups I” In Representation Theory of the American Mathematical Society 13.14, 2009, pp. 309–347 DOI: 10.1090/S1088-4165-09-00346-X
- “Proof of the Deligne-Langlands Conjecture for Hecke Algebras” In Inventiones mathematicae 87.1, 1987, pp. 153–215 DOI: 10.1007/BF01389157
- Adeel A. Khan and Charanya Ravi “Generalized Cohomology Theories for Algebraic Stacks”, 2022 DOI: 10.48550/arXiv.2106.15001
- George Lusztig “Cuspidal local systems and graded Hecke algebras, I” In Publications Mathématiques de l’IHÉS 67, 1988, pp. 145–202 URL: http://www.numdam.org/item/PMIHES_1988__67__145_0/
- George Lusztig “Affine Hecke Algebras and Their Graded Version” In Journal of the American Mathematical Society 2.3 American Mathematical Society, 1989, pp. 599–635 DOI: 10.2307/1990945
- G. Lusztig “Bases in Equivariant K𝐾Kitalic_K-Theory” In Representation Theory 2, 1998, pp. 298–369 DOI: 10.1090/S1088-4165-98-00054-5
- Laura Rider “Formality for the Nilpotent Cone and a Derived Springer Correspondence” In Advances in Mathematics 235, 2013, pp. 208–236 DOI: 10.1016/j.aim.2012.12.001
- Joël Riou “Algebraic K-theory, A1-homotopy and Riemann–Roch Theorems” In Journal of Topology 3.2, 2010, pp. 229–264 DOI: 10.1112/jtopol/jtq005
- Raphael Rouquier “2-Kac-Moody Algebras”, 2008 arXiv: http://arxiv.org/abs/0812.5023
- “The Intersection Motive of the Moduli Stack of Shtukas” In Forum of Mathematics, Sigma 8 Cambridge University Press, Cambridge, 2020, pp. 99 DOI: 10.1017/fms.2019.32
- Julia Sauter “A Survey on Springer Theory”, 2013 arXiv: http://arxiv.org/abs/1307.0973
- Julia Sauter “Cell Decompositions of Quiver Flag Varieties for Nilpotent Representations of the Oriented Cycle”, 2016 arXiv: http://arxiv.org/abs/1509.08026
- Wolfgang Soergel “Langlands’ Philosophy and Koszul Duality” In Algebra — Representation Theory Dordrecht: Springer Netherlands, 2001, pp. 379–414 DOI: 10.1007/978-94-010-0814-3_17
- Wolfgang Soergel “Kategorie O , Perverse Garben Und Moduln Uber Den Koinvariantez Zur Weylgruppe” In Journal of the American Mathematical Society 3.2, 1990, pp. 421 DOI: 10.2307/1990960
- Vladimir Sosnilo “Theorem of the Heart in Negative K-theory for Weight Structures”, 2017 arXiv: http://arxiv.org/abs/1705.07995
- Wolfgang Soergel, Rahbar Virk and Matthias Wendt “Equivariant Motives and Geometric Representation Theory. (with an Appendix by F. Hörmann and M. Wendt)”, 2018 arXiv: http://arxiv.org/abs/1809.05480
- “Quiver Schur Algebras and Q-Fock Space”, 2014 arXiv: http://arxiv.org/abs/1110.1115
- Jeremy Taylor “Uncompleting Soergel’s Endomorphismensatz”, 2023 arXiv: http://arxiv.org/abs/2305.03033
- R.W. Thomason “XX. Algebraic K-Theory of Group Scheme Actions” In XX. Algebraic K-Theory of Group Scheme Actions Princeton University Press, 2016, pp. 539–563 DOI: 10.1515/9781400882113-021
- R.W. Thomason “Lefschetz-Riemann-Roch Theorem and Coherent Trace Formula” In Inventiones mathematicae 85.3, 1986, pp. 515–543 DOI: 10.1007/BF01390328
- R.W. Thomason “Equivariant Algebraic vs. Topological K-homology Atiyah-Segal-style” In Duke Mathematical Journal 56.3 Duke University Press, 1988, pp. 589–636 DOI: 10.1215/S0012-7094-88-05624-4
- Burt Totaro “The Chow Ring of a Classifying Space” In Proceedings of Symposia in Pure Mathematics 67 Providence, Rhode Island: American Mathematical Society, 1999, pp. 249–281 DOI: 10.1090/pspum/067/1743244
- “Canonical Bases and KLR-algebras” In Journal für die Reine und Angewandte Mathematik 659, 2011, pp. 67–100 DOI: 10.1515/CRELLE.2011.068
- Xiaoxiang Zhou “Geometry of Quiver Flag Varieties”, 2023 URL: https://github.com/ramified/master_thesis/raw/main/master_thesis_Xiaoxiang_Zhou.pdf
- Xinwen Zhu “Coherent Sheaves on the Stack of Langlands Parameters”, 2021 DOI: 10.48550/arXiv.2008.02998
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.