Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Multilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysis (2401.12640v2)

Published 23 Jan 2024 in stat.ME

Abstract: Network meta-analysis combines aggregate data (AgD) from multiple randomised controlled trials, assuming that any effect modifiers are balanced across populations. Individual patient data (IPD) meta-regression is the "gold standard" method to relax this assumption, however IPD are frequently only available in a subset of studies. Multilevel network meta-regression (ML-NMR) extends IPD meta-regression to incorporate AgD studies whilst avoiding aggregation bias, but currently requires the aggregate-level likelihood to have a known closed form. Notably, this prevents application to time-to-event outcomes. We extend ML-NMR to individual-level likelihoods of any form, by integrating the individual-level likelihood function over the AgD covariate distributions to obtain the respective marginal likelihood contributions. We illustrate with two examples of time-to-event outcomes, showing the performance of ML-NMR in a simulated comparison with little loss of precision from a full IPD analysis, and demonstrating flexible modelling of baseline hazards using cubic M-splines with synthetic data on newly diagnosed multiple myeloma. ML-NMR is a general method for synthesising individual and aggregate level data in networks of all sizes. Extension to general likelihoods, including for survival outcomes, greatly increases the applicability of the method. R and Stan code is provided, and the methods are implemented in the multinma R package.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 74 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube