Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep reinforcement transfer learning for active flow control of a 3D square cylinder under state dimension mismatch (2401.12543v1)

Published 23 Jan 2024 in physics.flu-dyn

Abstract: This paper focuses on developing a deep reinforcement learning (DRL) control strategy to mitigate aerodynamic forces acting on a three dimensional (3D) square cylinder under high Reynolds number flow conditions. Four jets situated at the corners of the square cylinder are used as actuators and pressure probes on the cylinder surface are employed as feedback observers. The Soft Actor-Critic (SAC) algorithm is deployed to identify an effective control scheme. Additionally, we pre-train the DRL agent using a two dimensional (2D) square cylinder flow field at a low Reynolds number (Re =1000), followed by transferring it to the 3D square cylinder at Re =22000. To address the issue of state dimension mismatch in transfer learning from 2D to 3D case, a state dimension mismatch transfer learning method is developed to enhance the SAC algorithm, named SDTL-SAC. The results demonstrate transfer learning across different state spaces achieves the same control policy as the SAC algorithm, resulting in a significant improvement in training speed with a training cost reduction of 51.1%. Furthermore, the SAC control strategy leads to a notable 52.3% reduction in drag coefficient, accompanied by substantial suppression of lift fluctuations. These outcomes underscore the potential of DRL in active flow control, laying the groundwork for efficient, robust, and practical implementation of this control technique in practical engineering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.