2000 character limit reached
On the growth of resolvent of Toeplitz operators (2401.12095v1)
Published 22 Jan 2024 in math.SP and math.CV
Abstract: We study the growth of the resolvent of a Toeplitz operator $T_b$, defined on the Hardy space, in terms of the distance to its spectrum $\sigma(T_b)$. We are primarily interested in the case when the symbol $b$ is a Laurent polynomial (\emph{i.e., } the matrix $T_b$ is banded). We show that for an arbitrary such symbol the growth of the resolvent is quadratic, and under certain additional assumption it is linear. We also prove the quadratic growth of the resolvent for a certain class of non-rational symbols.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.