Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Colorectal Polyp Segmentation in the Deep Learning Era: A Comprehensive Survey (2401.11734v1)

Published 22 Jan 2024 in cs.CV

Abstract: Colorectal polyp segmentation (CPS), an essential problem in medical image analysis, has garnered growing research attention. Recently, the deep learning-based model completely overwhelmed traditional methods in the field of CPS, and more and more deep CPS methods have emerged, bringing the CPS into the deep learning era. To help the researchers quickly grasp the main techniques, datasets, evaluation metrics, challenges, and trending of deep CPS, this paper presents a systematic and comprehensive review of deep-learning-based CPS methods from 2014 to 2023, a total of 115 technical papers. In particular, we first provide a comprehensive review of the current deep CPS with a novel taxonomy, including network architectures, level of supervision, and learning paradigm. More specifically, network architectures include eight subcategories, the level of supervision comprises six subcategories, and the learning paradigm encompasses 12 subcategories, totaling 26 subcategories. Then, we provided a comprehensive analysis the characteristics of each dataset, including the number of datasets, annotation types, image resolution, polyp size, contrast values, and polyp location. Following that, we summarized CPS's commonly used evaluation metrics and conducted a detailed analysis of 40 deep SOTA models, including out-of-distribution generalization and attribute-based performance analysis. Finally, we discussed deep learning-based CPS methods' main challenges and opportunities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (209)
  1. J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition (PR), vol. 45, no. 9, pp. 3166–3182, 2012.
  2. G.-P. Ji, G. Xiao, Y.-C. Chou, D.-P. Fan, K. Zhao, G. Chen, and L. Van Gool, “Video polyp segmentation: A deep learning perspective,” Machine Intelligence Research, vol. 19, no. 6, pp. 531–549, 2022.
  3. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015, pp. 234–241.
  4. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support,Workshop (DLMIA ML-CDS), 2018, pp. 3–11.
  5. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. De Lange, P. Halvorsen, and H. D. Johansen, “Resunet++: An advanced architecture for medical image segmentation,” in Proceedings of the IEEE International Symposium on Multimedia (ISM), 2019, pp. 225–2255.
  6. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020, pp. 263–273.
  7. Y. Zhang, H. Liu, and Q. Hu, “Transfuse: Fusing transformers and cnns for medical image segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021, pp. 14–24.
  8. J. Wang, Q. Huang, F. Tang, J. Meng, J. Su, and S. Song, “Stepwise feature fusion: Local guides global,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 110–120.
  9. T. Ling, C. Wu, H. Yu, T. Cai, D. Wang, Y. Zhou, M. Chen, and K. Ding, “Probabilistic modeling ensemble vision transformer improves complex polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023, pp. 572–581.
  10. A. K. Jerebko, S. Teerlink, M. Franaszek, and R. M. Summers, “Polyp segmentation method for ct colonography computer-aided detection,” in SPIE Medical imaging: Physiology and Function: Methods, Systems, and Applications, vol. 5031, 2003, pp. 359–369.
  11. J. Yao, M. Miller, M. Franaszek, and R. M. Summers, “Colonic polyp segmentation in ct colonography-based on fuzzy clustering and deformable models,” IEEE Transactions on Medical Imaging (TMI), vol. 23, no. 11, pp. 1344–1352, 2004.
  12. S. Gross, M. Kennel, T. Stehle, J. Wulff, J. Tischendorf, C. Trautwein, and T. Aach, “Polyp segmentation in nbi colonoscopy,” in Bildverarbeitung für die Medizin 2009: Algorithmen—Systeme—Anwendungen, 2009, pp. 252–256.
  13. S. Hwang and M. E. Celebi, “Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2010, pp. 678–681.
  14. L. Lu, A. Barbu, M. Wolf, J. Liang, M. Salganicoff, and D. Comaniciu, “Accurate polyp segmentation for 3d ct colongraphy using multi-staged probabilistic binary learning and compositional model,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–8.
  15. M. Ganz, X. Yang, and G. Slabaugh, “Automatic segmentation of polyps in colonoscopic narrow-band imaging data,” IEEE Transactions on Biomedical Engineering (TBE), vol. 59, no. 8, pp. 2144–2151, 2012.
  16. J. Bernal, J. M. Núñez, F. J. Sánchez, and F. Vilariño, “Polyp segmentation method in colonoscopy videos by means of msa-dova energy maps calculation,” in Clinical Image-Based Procedures, Translational Research in Medical Imaging: Third International Workshop (CLIP), 2014, pp. 41–49.
  17. Y. Yuan, D. Li, and M. Q.-H. Meng, “Automatic polyp detection via a novel unified bottom-up and top-down saliency approach,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 22, no. 4, pp. 1250–1260, 2017.
  18. Y. Fang, C. Chen, Y. Yuan, and K.-y. Tong, “Selective feature aggregation network with area-boundary constraints for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019, pp. 302–310.
  19. V. S. Prasath, “Polyp detection and segmentation from video capsule endoscopy: A review,” Journal of Imaging, vol. 3, no. 1, p. 1, 2016.
  20. B. Taha, N. Werghi, and J. Dias, “Automatic polyp detection in endoscopy videos: A survey,” in Proceedings of the International Conference on Biomedical Engineering (BioMed), 2017, pp. 233–240.
  21. L. F. Sanchez-Peralta, L. Bote-Curiel, A. Picon, F. M. Sanchez-Margallo, and J. B. Pagador, “Deep learning to find colorectal polyps in colonoscopy: A systematic literature review,” Artificial Intelligence in Medicine, vol. 108, p. 101923, 2020.
  22. K. ELKarazle, V. Raman, P. Then, and C. Chua, “Detection of colorectal polyps from colonoscopy using machine learning: A survey on modern techniques,” Sensors, vol. 23, no. 3, p. 1225, 2023.
  23. J. Mei, T. Zhou, K. Huang, Y. Zhang, Y. Zhou, Y. Wu, and H. Fu, “A survey on deep learning for polyp segmentation: Techniques, challenges and future trends,” arXiv preprint arXiv:2304.07583, 2023.
  24. S. Ali, D. Jha, N. Ghatwary, S. Realdon, R. Cannizzaro, O. E. Salem, D. Lamarque, C. Daul, M. A. Riegler, K. V. Anonsen et al., “A multi-centre polyp detection and segmentation dataset for generalisability assessment,” Scientific Data, vol. 10, no. 1, p. 75, 2023.
  25. J.-H. Shi, Q. Zhang, Y.-H. Tang, and Z.-Q. Zhang, “Polyp-mixer: An efficient context-aware mlp-based paradigm for polyp segmentation,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 33, no. 1, pp. 30–42, 2022.
  26. S. Chen, E. Xie, C. GE, and P. Luo, “Cyclemlp: A mlp-like architecture for dense prediction,” in Proceedings of the International Conference on Learning Representation (ICLR), 2022.
  27. Y. Shen, Y. Lu, X. Jia, F. Bai, and M. Q.-H. Meng, “Task-relevant feature replenishment for cross-centre polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 599–608.
  28. N. K. Tomar, D. Jha, U. Bagci, and S. Ali, “Tganet: Text-guided attention for improved polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 151–160.
  29. J. Wei, Y. Hu, G. Li, S. Cui, S. Kevin Zhou, and Z. Li, “Boxpolyp: Boost generalized polyp segmentation using extra coarse bounding box annotations,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 67–77.
  30. X. Guo, Z. Chen, J. Liu, and Y. Yuan, “Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation,” Medical Image Analysis (MedIA), vol. 78, p. 102394, 2022.
  31. C. Yang, X. Guo, Z. Chen, and Y. Yuan, “Source free domain adaptation for medical image segmentation with fourier style mining,” Medical Image Analysis (MedIA), vol. 79, p. 102457, 2022.
  32. G. Yue, W. Han, B. Jiang, T. Zhou, R. Cong, and T. Wang, “Boundary constraint network with cross layer feature integration for polyp segmentation,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 26, no. 8, pp. 4090–4099, 2022.
  33. X. Zhao, L. Zhang, and H. Lu, “Automatic polyp segmentation via multi-scale subtraction network,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 120–130.
  34. J. Wei, Y. Hu, R. Zhang, Z. Li, S. K. Zhou, and S. Cui, “Shallow attention network for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 699–708.
  35. N. K. Tomar, D. Jha, M. A. Riegler, H. D. Johansen, D. Johansen, J. Rittscher, P. Halvorsen, and S. Ali, “Fanet: A feedback attention network for improved biomedical image segmentation,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 34, no. 11, pp. 9375–9388, 2022.
  36. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440.
  37. Q. Nguyen and S.-W. Lee, “Colorectal segmentation using multiple encoder-decoder network in colonoscopy images,” in Proceedings of the IEEE International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2018, pp. 208–211.
  38. L. Zhang, S. Dolwani, and X. Ye, “Automated polyp segmentation in colonoscopy frames using fully convolutional neural network and textons,” in Proceedings of the Medical Image Understanding and Analysis (MIUA), 2017, pp. 707–717.
  39. Q. Li, G. Yang, Z. Chen, B. Huang, L. Chen, D. Xu, X. Zhou, S. Zhong, H. Zhang, and T. Wang, “Colorectal polyp segmentation using a fully convolutional neural network,” in Proceedings of the IEEE International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), 2017, pp. 1–5.
  40. P. Brandao, E. Mazomenos, G. Ciuti, R. Caliò, F. Bianchi, A. Menciassi, P. Dario, A. Koulaouzidis, A. Arezzo, and D. Stoyanov, “Fully convolutional neural networks for polyp segmentation in colonoscopy,” in SPIE Medical Imaging: Computer-Aided Diagnosis, vol. 10134, 2017, pp. 101–107.
  41. Y. Su, Q. Xie, J. Ye, J. He, and J. Cheng, “An accurate polyp segmentation framework via feature secondary fusion,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI), 2023, pp. 1–5.
  42. Z. Yin, K. Liang, Z. Ma, and J. Guo, “Duplex contextual relation network for polyp segmentation,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5.
  43. Z. Xu, D. Qiu, S. Lin, X. Zhang, S. Shi, S. Zhu, F. Zhang, and X. Wan, “Temporal correlation network for video polyp segmentation,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 1317–1322.
  44. R. Feng, B. Lei, W. Wang, T. Chen, J. Chen, D. Z. Chen, and J. Wu, “Ssn: A stair-shape network for real-time polyp segmentation in colonoscopy images,” in Proceedings of the IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020, pp. 225–229.
  45. M. Akbari, M. Mohrekesh, E. Nasr-Esfahani, S. R. Soroushmehr, N. Karimi, S. Samavi, and K. Najarian, “Polyp segmentation in colonoscopy images using fully convolutional network,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 69–72.
  46. I. Wichakam, T. Panboonyuen, C. Udomcharoenchaikit, and P. Vateekul, “Real-time polyps segmentation for colonoscopy video frames using compressed fully convolutional network,” in Proceedings of the International Conference on Multimedia Modeling (MMM), 2018, pp. 393–404.
  47. H. Wu, J. Zhong, W. Wang, Z. Wen, and J. Qin, “Precise yet efficient semantic calibration and refinement in convnets for real-time polyp segmentation from colonoscopy videos,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 35, no. 4, 2021, pp. 2916–2924.
  48. C. Dong, Q. Zhao, K. Chen, and X. Huang, “Asymmetric attention upsampling: Rethinking upsampling for biological image segmentation,” in Proceedings of the IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021, pp. 645–649.
  49. R. Zhang, P. Lai, X. Wan, D.-J. Fan, F. Gao, X.-J. Wu, and G. Li, “Lesion-aware dynamic kernel for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 99–109.
  50. X. Zhao, Z. Wu, S. Tan, D.-J. Fan, Z. Li, X. Wan, and G. Li, “Semi-supervised spatial temporal attention network for video polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 456–466.
  51. A. Srivastava, D. Jha, S. Chanda, U. Pal, H. D. Johansen, D. Johansen, M. A. Riegler, S. Ali, and P. Halvorsen, “Msrf-net: a multi-scale residual fusion network for biomedical image segmentation,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 26, no. 5, pp. 2252–2263, 2021.
  52. Y. Lin, J. Wu, G. Xiao, J. Guo, G. Chen, and J. Ma, “Bsca-net: Bit slicing context attention network for polyp segmentation,” Pattern Recognition (PR), vol. 132, p. 108917, 2022.
  53. P. Song, J. Li, and H. Fan, “Attention based multi-scale parallel network for polyp segmentation,” Computers in Biology and Medicine (CBM), vol. 146, p. 105476, 2022.
  54. X. Li, J. Xu, Y. Zhang, R. Feng, R.-W. Zhao, T. Zhang, X. Lu, and S. Gao, “Tccnet: Temporally consistent context-free network for semi-supervised video polyp segmentation,” in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2022, pp. 1109–1115.
  55. T. D. Huy, H. C. Huyen, C. D. Nguyen, S. T. Duong, T. Bui, and S. Q. Truong, “Adversarial contrastive fourier domain adaptation for polyp segmentation,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5.
  56. Z. Qiu, Z. Wang, M. Zhang, Z. Xu, J. Fan, and L. Xu, “Bdg-net: boundary distribution guided network for accurate polyp segmentation,” in SPIE Medical Imaging: Image Processing, vol. 12032, 2022, pp. 792–799.
  57. M. Chen, X. Li, J. Xu, R. Yuan, Y. Zhang, R. Feng, T. Zhang, and S. Gao, “Single-modality endoscopic polyp segmentation via random color reversal synthesis and two-branched learning,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 1501–1504.
  58. N. K. Tomar, D. Jha, S. Ali, H. D. Johansen, D. Johansen, M. A. Riegler, and P. Halvorsen, “Ddanet: Dual decoder attention network for automatic polyp segmentation,” in Proceedings of the International Conference on Pattern Recognition Workshops (ICPRW), 2021, pp. 307–314.
  59. C. Wu, C. Long, S. Li, J. Yang, F. Jiang, and R. Zhou, “Msraformer: Multiscale spatial reverse attention network for polyp segmentation,” Computers in Biology and Medicine (CBM), vol. 151, p. 106274, 2022.
  60. Q. Jin, H. Hou, G. Zhang, and Z. Li, “Fegnet: A feedback enhancement gate network for automatic polyp segmentation,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 27, no. 7, pp. 3420–3430, 2023.
  61. Y. Huang, D. Tan, Y. Zhang, X. Li, and K. Hu, “Transmixer: A hybrid transformer and cnn architecture for polyp segmentation,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 1558–1561.
  62. K. B. Patel, F. Li, and G. Wang, “Fuzzynet: A fuzzy attention module for polyp segmentation,” in Proceedings of the Conference on Neural Information Processing Systems Workshop (NeurIPS), 2022.
  63. X. Du, X. Xu, and K. Ma, “Icgnet: Integration context-based reverse-contour guidance network for polyp segmentation,” in Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), 2022, pp. 877–883.
  64. T.-C. Nguyen, T.-P. Nguyen, G.-H. Diep, A.-H. Tran-Dinh, T. V. Nguyen, and M.-T. Tran, “Ccbanet: cascading context and balancing attention for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 633–643.
  65. Y. Shen, X. Jia, and M. Q.-H. Meng, “Hrenet: A hard region enhancement network for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 559–568.
  66. T. Kim, H. Lee, and D. Kim, “Uacanet: Uncertainty augmented context attention for polyp segmentation,” in Proceedings of the 29th ACM International Conference on Multimedia (ACM MM), 2021, pp. 2167–2175.
  67. R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu, “Adaptive context selection for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020, pp. 253–262.
  68. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pvt v2: Improved baselines with pyramid vision transformer,” Computational Visual Media (CVM), vol. 8, no. 3, pp. 415–424, 2022.
  69. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Computerized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015.
  70. D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in Proceedings of the International Conference on Multimedia Modeling (MMM), 2020, pp. 451–462.
  71. Y. Su, Y. Shen, J. Ye, J. He, and J. Cheng, “Revisiting feature propagation and aggregation in polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023, pp. 632–641.
  72. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pyramid vision transformer: A versatile backbone for dense prediction without convolutions,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 568–578.
  73. A. Wang, M. Xu, Y. Zhang, M. Islam, and H. Ren, “S2me: Spatial-spectral mutual teaching and ensemble learning for scribble-supervised polyp segmentation,” 2023.
  74. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  75. J. Wei, Y. Hu, S. Cui, S. K. Zhou, and Z. Li, “Weakpolyp: You only look bounding box for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023, pp. 757–766.
  76. S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 43, no. 2, pp. 652–662, 2019.
  77. M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu, “Visual attention network,” Computational Visual Media (CVM), vol. 9, no. 4, pp. 733–752, 2023.
  78. M. Haithami, A. Ahmed, I. Y. Liao, and H. Jalab, “Enhancing polyp segmentation generalizability by minimizing images’ total variation,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI), 2023, pp. 1–5.
  79. Y. Su, C. Deng, Z. Deng, J. Ye, J. He, and J. Cheng, “Go to the right: A real-time and accurate polyp segmentation model for practical use,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI), 2023, pp. 1–5.
  80. X. Xiong, S. Li, and G. Li, “Unpaired image-to-image translation based domain adaptation for polyp segmentation,” in Proceedings of the International Symposium on Biomedical Imaging (ISBI), 2023, pp. 1–5.
  81. L. F. Snchez-Peralta, J. B. Pagador, A. Picón, F. Caldern, N. Andraka, R. Bilbao, B. Glover, C. L. Saratxaga, and F. M. Snchez-Margallo, “Piccolo white-light and narrow-band imaging colonoscopic dataset: A performance comparative of models and datasets,” Applied Sciences, vol. 10, no. 23, 2020.
  82. M. Wang, X. An, Z. Pei, N. Li, L. Zhang, G. Liu, and D. Ming, “An efficient multi-task synergetic network for polyp segmentation and classification,” IEEE Journal of Biomedical and Health Informatics (JBHI), 2023.
  83. H. Mazumdar, C. Chakraborty, M. Sathvik, P. Jayakumar, and A. Kaushik, “Optimizing pix2pix gan with attention mechanisms for ai-driven polyp segmentation in iomt-enabled smart healthcare,” IEEE Journal of Biomedical and Health Informatics (JBHI), pp. 1–8, 2023.
  84. Y. Tian, F. Liu, G. Pang, Y. Chen, Y. Liu, J. W. Verjans, R. Singh, and G. Carneiro, “Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images,” Medical Image Analysis (MedIA), vol. 90, p. 102930, 2023.
  85. H. Borgli, V. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L. Eskeland, K. R. Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen, D. Johansen, C. Griwodz, H. K. Stensland, E. Garcia-Ceja, P. T. Schmidt, H. L. Hammer, M. A. Riegler, P. Halvorsen, and T. de Lange, “HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy,” Scientific Data, vol. 7, no. 1, p. 283, 2020.
  86. J. Wang, F. Chen, Y. Ma, L. Wang, Z. Fei, J. Shuai, X. Tang, Q. Zhou, and J. Qin, “Xbound-former: Toward cross-scale boundary modeling in transformers,” IEEE Transactions on Medical Imaging (TMI), vol. 42, no. 6, pp. 1735–1745, 2023.
  87. S. Jain, R. Atale, A. Gupta, U. Mishra, A. Seal, A. Ojha, J. Kuncewicz, and O. Krejcar, “Coinnet: A convolution-involution network with a novel statistical attention for automatic polyp segmentation,” IEEE Transactions on Medical Imaging (TMI), vol. 42, no. 12, pp. 3987–4000, 2023.
  88. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700–4708.
  89. J. Wang and C. Chen, “Unsupervised adaptation of polyp segmentation models via coarse-to-fine self-supervision,” in Proceedings of the International Conference on Information Processing in Medical Imaging (IPMI), 2023, pp. 250–262.
  90. D. Jha, N. K. Tomar, V. Sharma, and U. Bagci, “Transnetr: Transformer-based residual network for polyp segmentation with multi-center out-of-distribution testing,” in Medical Imaging with Deep Learning (MIDL), 2023.
  91. T. Zhou, Y. Zhou, K. He, C. Gong, J. Yang, H. Fu, and D. Shen, “Cross-level feature aggregation network for polyp segmentation,” Pattern Recognition (PR), vol. 140, p. 109555, 2023.
  92. K. Wang, X. Zhang, Y. Lu, W. Zhang, S. Huang, and D. Yang, “Gsal: Geometric structure adversarial learning for robust medical image segmentation,” Pattern Recognition (PR), vol. 140, p. 109596, 2023.
  93. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proceedings of the International Conference on Learning Representations (ICLR), 2015.
  94. A. Wang, M. Wu, H. Qi, H. Shi, J. Chen, Y. Chen, and X. Luo, “Pyramid transformer driven multibranch fusion for polyp segmentation in colonoscopic video images,” in Proceedings of the IEEE International Conference on Image Processing (ICIP), 2023, pp. 2350–2354.
  95. E. Moreu, E. Arazo, K. McGuinness, and N. E. O’Connor, “Self-supervised and semi-supervised polyp segmentation using synthetic data,” in Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), 2023, pp. 1–9.
  96. P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, “Hardnet: A low memory traffic network,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3552–3561.
  97. H. Wu, Z. Zhao, J. Zhong, W. Wang, Z. Wen, and J. Qin, “Polypseg+: A lightweight context-aware network for real-time polyp segmentation,” IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2610–2621, 2022.
  98. M. M. Rahman and R. Marculescu, “Medical image segmentation via cascaded attention decoding,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 6222–6231.
  99. O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, X. Yang, P.-A. Heng, I. Cetin, K. Lekadir, O. Camara, M. A. G. Ballester et al., “Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved?” IEEE Transactions on Medical Imaging (TMI), vol. 37, no. 11, pp. 2514–2525, 2018.
  100. D. Bo, W. Wenhai, F. Deng-Ping, L. Jinpeng, F. Huazhu, and S. Ling, “Polyp-pvt: Polyp segmentation with pyramid vision transformers,” 2023.
  101. T.-H. Nguyen-Mau, Q.-H. Trinh, N.-T. Bui, P.-T. V. Thi, M.-V. Nguyen, X.-N. Cao, M.-T. Tran, and H.-D. Nguyen, “Pefnet: Positional embedding feature for polyp segmentation,” in Proceedings of the International Conference on Multimedia Modeling (MMM), 2023, pp. 240–251.
  102. M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in Proceedings of the International Conference on Machine Learning (ICML), 2021, pp. 10 096–10 106.
  103. J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, vol. 9, pp. 283–293, 2014.
  104. N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE Transactions on Medical Imaging (TMI), vol. 35, no. 2, pp. 630–644, 2015.
  105. L. Cai, M. Wu, L. Chen, W. Bai, M. Yang, S. Lyu, and Q. Zhao, “Using guided self-attention with local information for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022, pp. 629–638.
  106. H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang, “Cvt: Introducing convolutions to vision transformers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 22–31.
  107. Y. Ma, X. Chen, K. Cheng, Y. Li, and B. Sun, “Ldpolypvideo benchmark: a large-scale colonoscopy video dataset of diverse polyps,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 387–396.
  108. D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M. López, A. Romero, M. Drozdzal, A. Courville et al., “A benchmark for endoluminal scene segmentation of colonoscopy images,” Journal of Healthcare Engineering, vol. 2017, 2017.
  109. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7132–7141.
  110. E. Sanderson and B. J. Matuszewski, “Fcn-transformer feature fusion for polyp segmentation,” in Proceedings of the Conference on Medical Image Understanding and Analysis (MIUA), 2022, pp. 892–907.
  111. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in Proceedings of the International Conference on Machine Learning (ICML), 2019, pp. 6105–6114.
  112. Y. Xiao, Z. Chen, L. Wan, L. Yu, and L. Zhu, “Icbnet: Iterative context-boundary feedback network for polyp segmentation,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 1297–1304.
  113. R. Chen, X. Wang, B. Jin, J. Tu, F. Zhu, and Y. Li, “Cld-net: Complement local detail for medical small-object segmentation,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 942–947.
  114. H. Du, J. Wang, M. Liu, Y. Wang, and E. Meijering, “Swinpa-net: Swin transformer-based multiscale feature pyramid aggregation network for medical image segmentation,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.
  115. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 10 012–10 022.
  116. W. Zhang, C. Fu, Y. Zheng, F. Zhang, Y. Zhao, and C.-W. Sham, “Hsnet: A hybrid semantic network for polyp segmentation,” Computers in Biology and Medicine (CBM), vol. 150, p. 106173, 2022.
  117. F. Liu, Z. Hua, J. Li, and L. Fan, “Dbmf: Dual branch multiscale feature fusion network for polyp segmentation,” Computers in Biology and Medicine (CBM), vol. 151, p. 106304, 2022.
  118. L. F. Sánchez-Peralta, J. B. Pagador, A. Picón, Á. J. Calderón, F. Polo, N. Andraka, R. Bilbao, B. Glover, C. L. Saratxaga, and F. M. Sánchez-Margallo, “Piccolo white-light and narrow-band imaging colonoscopic dataset: A performance comparative of models and datasets,” Applied Sciences, vol. 10, no. 23, p. 8501, 2020.
  119. M. Cheng, Z. Kong, G. Song, Y. Tian, Y. Liang, and J. Chen, “Learnable oriented-derivative network for polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).   Springer, 2021, pp. 720–730.
  120. H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image transformers & distillation through attention,” in Proceedings of the International Conference on Machine Learning (ICML), 2021, pp. 10 347–10 357.
  121. Y. Tian, G. Pang, F. Liu, Y. Chen, S. H. Shin, J. W. Verjans, R. Singh, and G. Carneiro, “Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 128–140.
  122. S. Li, X. Sui, J. Fu, H. Fu, X. Luo, Y. Feng, X. Xu, Y. Liu, D. S. Ting, and R. S. M. Goh, “Few-shot domain adaptation with polymorphic transformers,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2021, pp. 330–340.
  123. S. Li, X. Sui, X. Luo, X. Xu, Y. Liu, and R. Goh, “Medical image segmentation using squeeze-and-expansion transformers,” Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), vol. 576, p. 576.
  124. G.-P. Ji, Y.-C. Chou, D.-P. Fan, G. Chen, H. Fu, D. Jha, and L. Shao, “Progressively normalized self-attention network for video polyp segmentation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021, pp. 142–152.
  125. X. Guo, C. Yang, and Y. Yuan, “Dynamic-weighting hierarchical segmentation network for medical images,” Medical Image Analysis (MedIA), vol. 73, p. 102196, 2021.
  126. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
  127. X. Guo, C. Yang, Y. Liu, and Y. Yuan, “Learn to threshold: Thresholdnet with confidence-guided manifold mixup for polyp segmentation,” IEEE Transactions on Medical Imaging (TMI), vol. 40, no. 4, pp. 1134–1146, 2021.
  128. C. Yang, X. Guo, M. Zhu, B. Ibragimov, and Y. Yuan, “Mutual-prototype adaptation for cross-domain polyp segmentation,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 25, no. 10, pp. 3886–3897, 2021.
  129. D. Jha, P. H. Smedsrud, D. Johansen, T. de Lange, H. D. Johansen, P. Halvorsen, and M. A. Riegler, “A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 25, no. 6, pp. 2029–2040, 2021.
  130. Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 15, no. 5, pp. 749–753, 2018.
  131. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2117–2125.
  132. H. Wu, G. Chen, Z. Wen, and J. Qin, “Collaborative and adversarial learning of focused and dispersive representations for semi-supervised polyp segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 3489–3498.
  133. S. Safarov and T. K. Whangbo, “A-denseunet: Adaptive densely connected unet for polyp segmentation in colonoscopy images with atrous convolution,” Sensors, vol. 21, no. 4, p. 1441, 2021.
  134. K. Patel, A. M. Bur, and G. Wang, “Enhanced u-net: A feature enhancement network for polyp segmentation,” in Proceedings of the IEEE 18th Conference on Robots and Vision (CRV), 2021, pp. 181–188.
  135. M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “Focus u-net: A novel dual attention-gated cnn for polyp segmentation during colonoscopy,” Computers in Biology and Medicine (CBM), vol. 137, p. 104815, 2021.
  136. S.-T. Tran, C.-H. Cheng, T.-T. Nguyen, M.-H. Le, and D.-G. Liu, “Tmd-unet: Triple-unet with multi-scale input features and dense skip connection for medical image segmentation,” in Healthcare, vol. 9, no. 1, 2021, p. 54.
  137. V. Thambawita, S. A. Hicks, P. Halvorsen, and M. A. Riegler, “Divergentnets: Medical image segmentation by network ensemble,” in Proceedings of the IEEE International Symposium on Biomedical Imaging Workshops (ISBIW), 2021.
  138. Y. Meng, H. Zhang, D. Gao, Y. Zhao, X. Yang, X. Qian, X. Huang, Y. Zheng, A. Remark, and U. London, “Bi-gcn: Boundary-aware input-dependent graph convolution network for biomedical image segmentation,” Proceedings of the British Machine Vision Conference (BMVC), 2021.
  139. X. Xie, J. Chen, Y. Li, L. Shen, K. Ma, and Y. Zheng, “Mi2gan: Generative adversarial network for medical image domain adaptation using mutual information constraint,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020, pp. 516–525.
  140. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2223–2232.
  141. J. Zhong, W. Wang, H. Wu, Z. Wen, and J. Qin, “Polypseg: An efficient context-aware network for polyp segmentation from colonoscopy videos,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020, pp. 285–294.
  142. Y. Fang, D. Zhu, J. Yao, Y. Yuan, and K.-Y. Tong, “Abc-net: Area-boundary constraint network with dynamical feature selection for colorectal polyp segmentation,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 799–11 809, 2020.
  143. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1492–1500.
  144. K. Wickstrøm, M. Kampffmeyer, and R. Jenssen, “Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps,” Medical Image Analysis (MedIA), vol. 60, p. 101619, 2020.
  145. S. Wang, Y. Cong, H. Zhu, X. Chen, L. Qu, H. Fan, Q. Zhang, and M. Liu, “Multi-scale context-guided deep network for automated lesion segmentation with endoscopy images of gastrointestinal tract,” IEEE Journal of Biomedical and Health Informatics (JBHI), vol. 25, no. 2, pp. 514–525, 2020.
  146. Z. Huang, Z. Wang, J. Chen, Z. Zhu, and J. Li, “Real-time colonoscopy image segmentation based on ensemble knowledge distillation,” in Proceedings of the IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), 2020, pp. 454–459.
  147. D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen, “Doubleu-net: A deep convolutional neural network for medical image segmentation,” in Proceedings of the IEEE International Symposium on Computer-based Medical Systems (CBMS), 2020, pp. 558–564.
  148. V. de Almeida Thomaz, C. A. Sierra-Franco, and A. B. Raposo, “Training data enhancements for robust polyp segmentation in colonoscopy images,” in Proceedings of the IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2019, pp. 192–197.
  149. B. Murugesan, K. Sarveswaran, S. M. Shankaranarayana, K. Ram, J. Joseph, and M. Sivaprakasam, “Psi-net: Shape and boundary aware joint multi-task deep network for medical image segmentation,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 7223–7226.
  150. J. Poorneshwaran, S. S. Kumar, K. Ram, J. Joseph, and M. Sivaprakasam, “Polyp segmentation using generative adversarial network,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 7201–7204.
  151. X. Sun, P. Zhang, D. Wang, Y. Cao, and B. Liu, “Colorectal polyp segmentation by u-net with dilation convolution,” in Proceedings of the IEEE International Conference on Machine Learning and Applications (ICMLA), 2019, pp. 851–858.
  152. J. Bernal, N. Tajkbaksh, F. J. Sanchez, B. J. Matuszewski, H. Chen, L. Yu, Q. Angermann, O. Romain, B. Rustad, I. Balasingham et al., “Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge,” IEEE Transactions on Medical Imaging, vol. 36, no. 6, pp. 1231–1249, 2017.
  153. H. A. Qadir, Y. Shin, J. Solhusvik, J. Bergsland, L. Aabakken, and I. Balasingham, “Polyp detection and segmentation using mask r-cnn: Does a deeper feature extractor cnn always perform better?” in Proceedings of the IEEE International Symposium on Medical Information and Communication Technology (ISMICT), 2019, pp. 1–6.
  154. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2961–2969.
  155. Y. B. Guo and B. Matuszewski, “Giana polyp segmentation with fully convolutional dilation neural networks,” in Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2019, pp. 632–641.
  156. M. Bagheri, M. Mohrekesh, M. Tehrani, K. Najarian, N. Karimi, S. Samavi, and S. R. Soroushmehr, “Deep neural network based polyp segmentation in colonoscopy images using a combination of color spaces,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 6742–6745.
  157. A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder representations for efficient semantic segmentation,” in Proceedings of the IEEE Visual Communications and Image Processing (VCIP), 2017, pp. 1–4.
  158. X. Guo, N. Zhang, J. Guo, H. Zhang, Y. Hao, and J. Hang, “Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning,” Medical Physics, vol. 46, no. 12, pp. 5666–5676, 2019.
  159. A. Sánchez-González, B. García-Zapirain, D. Sierra-Sosa, and A. Elmaghraby, “Automatized colon polyp segmentation via contour region analysis,” Computers in Biology and Medicine (CBM), vol. 100, pp. 152–164, 2018.
  160. K. Wickstrøm, M. Kampffmeyer, and R. Jenssen, “Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation,” in Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2018, pp. 1–6.
  161. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, no. 12, pp. 2481–2495, 2017.
  162. O. H. Maghsoudi, “Superpixel based segmentation and classification of polyps in wireless capsule endoscopy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2017, pp. 1–4.
  163. Y. Jia, “Polyps auto-detection in wireless capsule endoscopy images using improved method based on image segmentation,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 1631–1636.
  164. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.
  165. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.
  166. P. Ngoc Lan, N. S. An, D. V. Hang, D. V. Long, T. Q. Trung, N. T. Thuy, and D. V. Sang, “Neounet: Towards accurate colon polyp segmentation and neoplasm detection,” in Advances in Visual Computing: 16th International Symposium (ISVC), 2021, pp. 15–28.
  167. L. Yao, F. He, X. Wang, L. Zhou, H. Peng, and X. Huang, “Scheme and dataset for evaluating computer-aided polyp detection system in colonoscopy,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5.
  168. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2881–2890.
  169. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 1597–1604.
  170. F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung, “Saliency filters: Contrast based filtering for salient region detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 733–740.
  171. M. Ran, Z.-M. Lihi, and T. Ayellet, “How to evaluate foreground maps?” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 248–255.
  172. D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-measure: A new way to evaluate foreground maps.” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4548–4557.
  173. D.-P. Fan, C. Gong, Y. Cao, B. Ren, M.-M. Cheng, and A. Borji, “Enhanced-alignment measure for binary foreground map evaluation,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 698–704.
  174. X. Zhao, H. Jia, Y. Pang, L. Lv, F. Tian, L. Zhang, W. Sun, and H. Lu, “M2snet: Multi-scale in multi-scale subtraction network for medical image segmentation,” arXiv preprint arXiv:2303.10894, 2023.
  175. Y. Jin, Y. Hu, Z. Jiang, and Q. Zheng, “Polyp segmentation with convolutional mlp,” The Visual Computer, vol. 39, no. 10, pp. 4819–4837, 2023.
  176. J. Song, X. Chen, Q. Zhu, F. Shi, D. Xiang, Z. Chen, Y. Fan, L. Pan, and W. Zhu, “Global and local feature reconstruction for medical image segmentation,” IEEE Transactions on Medical Imaging (TMI), vol. 41, no. 9, pp. 2273–2284, 2022.
  177. A. Lou, S. Guan, H. Ko, and M. H. Loew, “Caranet: Context axial reverse attention network for segmentation of small medical objects,” in SPIE Medical Imaging: Image Processing, vol. 12032, 2022, pp. 81–92.
  178. M. Wang, X. An, Y. Li, N. Li, W. Hang, and G. Liu, “Ems-net: Enhanced multi-scale network for polyp segmentation,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 2021, pp. 2936–2939.
  179. C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, “Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps,” arXiv e-prints, pp. arXiv–2101, 2021.
  180. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Transactions on Medical Imaging (TMI), vol. 39, no. 6, pp. 1856–1867, 2019.
  181. X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli, “See more, know more: Unsupervised video object segmentation with co-attention siamese networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3623–3632.
  182. T. Zhou, J. Li, S. Wang, R. Tao, and J. Shen, “Matnet: Motion-attentive transition network for zero-shot video object segmentation,” IEEE Transactions on Image Processing (TIP), vol. 29, pp. 8326–8338, 2020.
  183. Y. Gu, L. Wang, Z. Wang, Y. Liu, M.-M. Cheng, and S.-P. Lu, “Pyramid constrained self-attention network for fast video salient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, no. 07, 2020, pp. 10 869–10 876.
  184. R. Liu, Z. Wu, S. Yu, and S. Lin, “The emergence of objectness: Learning zero-shot segmentation from videos,” Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 13 137–13 152, 2021.
  185. M. Zhang, J. Liu, Y. Wang, Y. Piao, S. Yao, W. Ji, J. Li, H. Lu, and Z. Luo, “Dynamic context-sensitive filtering network for video salient object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 1553–1563.
  186. G.-P. Ji, K. Fu, Z. Wu, D.-P. Fan, J. Shen, and L. Shao, “Full-duplex strategy for video object segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 4922–4933.
  187. J. G.-B. Puyal, K. K. Bhatia, P. Brandao, O. F. Ahmad, D. Toth, R. Kader, L. Lovat, P. Mountney, and D. Stoyanov, “Endoscopic polyp segmentation using a hybrid 2d/3d cnn,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2020, pp. 295–305.
  188. M. Misawa, S.-e. Kudo, Y. Mori, K. Hotta, K. Ohtsuka, T. Matsuda, S. Saito, T. Kudo, T. Baba, F. Ishida et al., “Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video),” Gastrointestinal Endoscopy, vol. 93, no. 4, pp. 960–967, 2021.
  189. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning (FTML), vol. 14, no. 1–2, pp. 1–210, 2021.
  190. S. Hong and J. Chae, “Communication-efficient randomized algorithm for multi-kernel online federated learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 44, no. 12, pp. 9872–9886, 2021.
  191. S. Zhou and G. Y. Li, “Federated learning via inexact admm,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 8, pp. 9699–9708, 2023.
  192. L. Liu, X. Jiang, F. Zheng, H. Chen, G.-J. Qi, H. Huang, and L. Shao, “A bayesian federated learning framework with online laplace approximation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), pp. 1–16, 2023.
  193. W. M. Kouw and M. Loog, “A review of domain adaptation without target labels,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 43, no. 3, pp. 766–785, 2019.
  194. J. Dong, Y. Cong, G. Sun, Z. Fang, and Z. Ding, “Where and how to transfer: knowledge aggregation-induced transferability perception for unsupervised domain adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
  195. P. Oza, V. A. Sindagi, V. V. Sharmini, and V. M. Patel, “Unsupervised domain adaptation of object detectors: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023.
  196. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” in Proceedings of the International Conference on Learning Representations (ICLR), 2014.
  197. J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,” IEEE Transactions on Evolutionary Computation (TEC), vol. 23, no. 5, pp. 828–841, 2019.
  198. I. Misra and L. v. d. Maaten, “Self-supervised learning of pretext-invariant representations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6707–6717.
  199. P. Dollar, M. Singh, and R. Girshick, “Fast and accurate model scaling,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 924–932.
  200. T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A comprehensive survey on model compression and acceleration,” Artificial Intelligence Review, vol. 53, pp. 5113–5155, 2020.
  201. T. Li, J. Li, Z. Liu, and C. Zhang, “Few sample knowledge distillation for efficient network compression,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 14 639–14 647.
  202. X. Xia, X. Pan, N. Li, X. He, L. Ma, X. Zhang, and N. Ding, “Gan-based anomaly detection: A review,” Neurocomputing, vol. 493, pp. 497–535, 2022.
  203. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  204. L. Tang, H. Xiao, and B. Li, “Can sam segment anything? when sam meets camouflaged object detection,” arXiv preprint arXiv:2304.04709, 2023.
  205. M. Hu, Y. Li, and X. Yang, “Skinsam: Empowering skin cancer segmentation with segment anything model,” arXiv preprint arXiv:2304.13973, 2023.
  206. T. Yu, R. Feng, R. Feng, J. Liu, X. Jin, W. Zeng, and Z. Chen, “Inpaint anything: Segment anything meets image inpainting,” arXiv preprint arXiv:2304.06790, 2023.
  207. T. Zhou, Y. Zhang, Y. Zhou, Y. Wu, and C. Gong, “Can sam segment polyps?” arXiv preprint arXiv:2304.07583, 2023.
  208. S. Menon and C. Vondrick, “Visual classification via description from large language models,” in Proceedings of the International Conference on Learning Representations (ICLR), 2022.
  209. S. Parisot, Y. Yang, and S. McDonagh, “Learning to name classes for vision and language models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 23 477–23 486.
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.