Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-Based Anomaly Detection in Cyber-Physical Systems: Progress and Opportunities (2003.13213v2)

Published 30 Mar 2020 in cs.CR and eess.SP

Abstract: Anomaly detection is crucial to ensure the security of cyber-physical systems (CPS). However, due to the increasing complexity of CPSs and more sophisticated attacks, conventional anomaly detection methods, which face the growing volume of data and need domain-specific knowledge, cannot be directly applied to address these challenges. To this end, deep learning-based anomaly detection (DLAD) methods have been proposed. In this paper, we review state-of-the-art DLAD methods in CPSs. We propose a taxonomy in terms of the type of anomalies, strategies, implementation, and evaluation metrics to understand the essential properties of current methods. Further, we utilize this taxonomy to identify and highlight new characteristics and designs in each CPS domain. Also, we discuss the limitations and open problems of these methods. Moreover, to give users insights into choosing proper DLAD methods in practice, we experimentally explore the characteristics of typical neural models, the workflow of DLAD methods, and the running performance of DL models. Finally, we discuss the deficiencies of DL approaches, our findings, and possible directions to improve DLAD methods and motivate future research.

Citations (139)

Summary

We haven't generated a summary for this paper yet.