Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

One-dimensional non-Hermitian band structures as Riemann surfaces (2401.11661v1)

Published 22 Jan 2024 in math-ph, cond-mat.other, and math.MP

Abstract: We present the viewpoint of treating one-dimensional band structures as Riemann surfaces, linking the unique properties of non-Hermiticity to the geometry and topology of the Riemann surface. Branch cuts and branch points play a significant role when this viewpoint is applied to both the open-boundary spectrum and the braiding structure. An open-boundary spectrum is interpreted as branch cuts connecting certain branch points, and its consistency with the monodromy representation severely limits its possible morphology. A braid word for the Brillouin zone can be read off from its intersections with branch cuts, and its crossing number is given by the winding number of the discriminant. These results open new avenues to generate important insights into the physical behaviors of non-Hermitian systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. P. R. Villeneuve and S. Fan, Photonic crystals: putting a new twist on light, Nature 386, 143 (1997).
  2. S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nature Reviews Materials 1, 1 (2016).
  3. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Advances in Physics 69, 249 (2020).
  4. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Reviews of Modern Physics 93, 015005 (2021).
  5. W. Tang, K. Ding, and G. Ma, Experimental realization of non-Abelian permutations in a three-state non-Hermitian system, National Science Review 9, nwac010 (2022).
  6. K. Yokomizo and S. Murakami, Non-Bloch band theory of non-Hermitian systems, Physical Review Letters 123, 066404 (2019).
  7. K. Zhang, Z. Yang, and C. Fang, Correspondence between winding numbers and skin modes in non-Hermitian systems, Physical Review Letters 125, 126402 (2020).
  8. S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Physical Review Letters 121, 086803 (2018).
  9. V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Physical Review B 97, 121401(R) (2018).
  10. C. H. Lee and R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems, Physical Review B 99, 201103(R) (2019).
  11. F. K. Kunst and V. Dwivedi, Non-Hermitian systems and topology: A transfer-matrix perspective, Physical Review B 99, 245116 (2019).
  12. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Physical Review Letters 123, 170401 (2019a).
  13. S. Longhi, Probing non-Hermitian skin effect and non-Bloch phase transitions, Physical Review Research 1, 023013 (2019).
  14. Y. Yi and Z. Yang, Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect, Physical Review Letters 125, 186802 (2020).
  15. K. Kawabata, N. Okuma, and M. Sato, Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class, Physical Review B 101, 195147 (2020a).
  16. K. Kawabata, M. Sato, and K. Shiozaki, Higher-order non-Hermitian skin effect, Physical Review B 102, 205118 (2020b).
  17. K. Zhang, Z. Yang, and C. Fang, Universal non-Hermitian skin effect in two and higher dimensions, Nature Communications 13, 2496 (2022a).
  18. T. E. Lee, Anomalous edge state in a non-Hermitian lattice, Physical Review Letters 116, 133903 (2016).
  19. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-Hermitian Hamiltonians, Physical Review Letters 120, 146402 (2018).
  20. S. Yao, F. Song, and Z. Wang, Non-Hermitian Chern bands, Physical Review Letters 121, 136802 (2018).
  21. Y. Xiong, Why does bulk boundary correspondence fail in some non-Hermitian topological models, Journal of Physics Communications 2, 035043 (2018).
  22. H. Zhou and J. Y. Lee, Periodic table for topological bands with non-Hermitian symmetries, Physical Review B 99, 235112 (2019).
  23. L. Herviou, J. H. Bardarson, and N. Regnault, Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition, Physical Review A 99, 052118 (2019).
  24. E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence, Physical Review B 99, 081302(R) (2019).
  25. L. Jin and Z. Song, Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Physical Review B 99, 081103(R) (2019).
  26. K.-I. Imura and Y. Takane, Generalized bulk-edge correspondence for non-Hermitian topological systems, Physical Review B 100, 165430 (2019).
  27. F. Song, S. Yao, and Z. Wang, Non-Hermitian topological invariants in real space, Physical Review Letters 123, 246801 (2019b).
  28. D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian boundary modes and topology, Physical Review Letters 124, 056802 (2020).
  29. H.-G. Zirnstein, G. Refael, and B. Rosenow, Bulk-boundary correspondence for non-Hermitian Hamiltonians via Green functions, Physical Review Letters 126, 216407 (2021).
  30. K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and exceptional-point geometries, Nature Reviews Physics 4, 745 (2022).
  31. H. Hu and E. Zhao, Knots and non-Hermitian Bloch bands, Physical Review Letters 126, 010401 (2021).
  32. Z. Li and R. S. K. Mong, Homotopical characterization of non-Hermitian band structures, Physical Review B 103, 155129 (2021).
  33. R. Cavalieri and E. Miles, Riemann surfaces and algebraic curves: A first course in Hurwitz theory (Cambridge University Press, 2016).
  34. T. Tai and C. H. Lee, Zoology of non-Hermitian spectra and their graph topology, Physical Review B 107, L220301 (2023).
  35. E. J. Pap, D. Boer, and H. Waalkens, Non-Abelian nature of systems with multiple exceptional points, Physical Review A 98, 023818 (2018).
  36. W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Physical Review Letters 42, 1698 (1979).
  37. R. Hartshorne, Algebraic geometry (Springer Science & Business Media, 2013).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.