Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local Harmonic Approximation to Quantum Mean Force Gibbs State (2401.11595v1)

Published 21 Jan 2024 in quant-ph

Abstract: When the strength of interaction between a quantum system and bath is non-negligible, the equilibrium state can deviate from the Gibbs state. Here, we obtain an approximate expression for such a mean force Gibbs state for a particle in an arbitrary one dimensional potential, interacting with a bosonic bath. This approximate state is accurate when either the system-bath coupling or the temperature is large, or when the third and higher derivatives of the potential are small compared to certain system-bath specific parameters. We show that our result recovers the ultra strong coupling and high temperature results recently derived in literature. We then apply this method to study some systems like a quartic oscillator and a particle in a quartic double-well potential. We also use our method to analyze the proton tunneling problem in a DNA recently studied in literature [Slocombe et al., Comm. Phys., vol. 5, no. 1, p. 109, 2022], where our results suggest the equilibrium value of the probability of mutation to be orders of magnitude lower than the steady state value obtained there ($10{-8}$ vs $10{-4}$).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Reviews of modern physics, vol. 77, no. 2, p. 513, 2005.
  2. T. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Reports on Progress in Physics, vol. 69, pp. 853 – 898, 2006.
  3. I. Djordjevic, “Hybrid cv-dv quantum communications and quantum networks,” IEEE Access, vol. 10, pp. 23 284–23 292, 2022.
  4. A. Inoue, T. Kashiwazaki, T. Yamashima, N. Takanashi, T. Kazama, K. Enbutsu, K. Watanabe, T. Umeki, M. Endo, and A. Furusawa, “Toward a multi-core ultra-fast optical quantum processor: 43-ghz bandwidth real-time amplitude measurement of 5-db squeezed light using modularized optical parametric amplifier with 5g technology,” Applied Physics Letters, 2022.
  5. X. Yang and M. Xiao, “Electromagnetically induced entanglement,” Scientific Reports, vol. 5, 2015.
  6. C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, and M. Oberthaler, “Atomic homodyne detection of continuous-variable entangled twin-atom states,” Nature, vol. 480, pp. 219–223, 2011.
  7. J. Huang, Y. Liu, J.-F. Huang, and J. Liao, “Generation of macroscopic entangled cat states in a longitudinally coupled cavity-qed model,” Physical Review A, 2019.
  8. R. Takagi and Q. Zhuang, “Convex resource theory of non-gaussianity,” Physical Review A, 2018.
  9. G. Ferrari, L. Lami, T. Theurer, and M. Plenio, “Asymptotic state transformations of continuous variable resources,” Communications in Mathematical Physics, vol. 398, pp. 291 – 351, 2020.
  10. V. Narasimhachar, S. Assad, F. Binder, J. Thompson, B. Yadin, and M. Gu, “Thermodynamic resources in continuous-variable quantum systems,” npj Quantum Information, vol. 7, pp. 1–7, 2019.
  11. E. Hoskinson, F. Lecocq, N. Didier, A. Fay, F. Hekking, W. Guichard, O. Buisson, R. Dolata, B. Mackrodt, and A. Zorin, “Quantum dynamics in a camelback potential of a dc squid.” Physical review letters, vol. 102 9, p. 097004, 2008.
  12. R. Ferreira and G. Bastard, “Tunnelling and relaxation in semiconductor double quantum wells,” Reports on Progress in Physics, vol. 60, pp. 345–387, 1997.
  13. Monteoliva and Paz, “Decoherence and the rate of entropy production in chaotic quantum systems,” Physical review letters, vol. 85 16, pp. 3373–6, 2000.
  14. B.C.Bag, S.Chaudhuri, J. Chaudhuri, and D.S.Ray, “A semiclassical theory of quantum noise in open chaotic systems,” Physica D: Nonlinear Phenomena, vol. 125, pp. 47–64, 1998.
  15. A. Jt, “Semiclassical chaos in quartic anharmonic oscillators.” Physical Review A, vol. 45, pp. 5373–5377, 1992.
  16. B. Chakrabarty and S. Chaudhuri, “Out of time ordered effective dynamics of a quartic oscillator,” SciPost Physics, 2019.
  17. K.-L. Liu and H. Goan, “Non-markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Physical Review A, vol. 76, p. 022312, 2007.
  18. R. Vasile, S. Maniscalco, M. Paris, H. Breuer, and J. Piilo, “Quantifying non-markovianity of continuous-variable gaussian dynamical maps,” Physical Review A, vol. 84, p. 052118, 2011.
  19. C. Hörhammer and H. Buettner, “Environment-induced two-mode entanglement in quantum brownian motion,” Physical Review A, vol. 77, p. 042305, 2007.
  20. J. Ruostekoski and D. F. Walls, “Bose-einstein condensate in a double-well potential as an open quantum system,” Physical Review A, vol. 58, no. 1, p. R50, 1998.
  21. M. P. Fisher and A. T. Dorsey, “Dissipative quantum tunneling in a biased double-well system at finite temperatures,” Physical review letters, vol. 54, no. 15, p. 1609, 1985.
  22. H. Grabert and U. Weiss, “Quantum tunneling rates for asymmetric double-well systems with ohmic dissipation,” Physical review letters, vol. 54, no. 15, p. 1605, 1985.
  23. M. Topaler and N. Makri, “Quantum rates for a double well coupled to a dissipative bath: Accurate path integral results and comparison with approximate theories,” The Journal of chemical physics, vol. 101, no. 9, pp. 7500–7519, 1994.
  24. A. C. Oliveira, J. G. P. de Faria, and M. Nemes, “Quantum-classical transition of the open quartic oscillator: The role of the environment.” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 73 4 Pt 2, p. 046207, 2006.
  25. J. Cresser and J. Anders, “Weak and ultrastrong coupling limits of the quantum mean force gibbs state,” Physical Review Letters, vol. 127, no. 25, p. 250601, 2021.
  26. U. Seifert, “First and second law of thermodynamics at strong coupling,” Physical review letters, vol. 116, no. 2, p. 020601, 2016.
  27. T. G. Philbin and J. Anders, “Thermal energies of classical and quantum damped oscillators coupled to reservoirs,” Journal of Physics A: Mathematical and Theoretical, vol. 49, no. 21, p. 215303, 2016.
  28. C. Jarzynski, “Nonequilibrium work theorem for a system strongly coupled to a thermal environment,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2004, no. 09, p. P09005, 2004.
  29. M. Campisi, P. Talkner, and P. Hänggi, “Fluctuation theorem for arbitrary open quantum systems,” Physical review letters, vol. 102, no. 21, p. 210401, 2009.
  30. T. W. Allen, O. S. Andersen, and B. Roux, “Molecular dynamics—potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels,” Biophysical chemistry, vol. 124, no. 3, pp. 251–267, 2006.
  31. K. Maksimiak, S. Rodziewicz-Motowidło, C. Czaplewski, A. Liwo, and H. A. Scheraga, “Molecular simulation study of the potentials of mean force for the interactions between models of like-charged and between charged and nonpolar amino acid side chains in water,” The Journal of Physical Chemistry B, vol. 107, no. 48, pp. 13 496–13 504, 2003.
  32. B. Roux and T. Simonson, “Implicit solvent models,” Biophysical chemistry, vol. 78, no. 1-2, pp. 1–20, 1999.
  33. B. Roux, “The calculation of the potential of mean force using computer simulations,” Computer physics communications, vol. 91, no. 1-3, pp. 275–282, 1995.
  34. M. Gillan, “Quantum-classical crossover of the transition rate in the damped double well,” Journal of Physics C: Solid State Physics, vol. 20, no. 24, p. 3621, 1987.
  35. Y. Liu, Y. Yan, T. Xing, and Q. Shi, “Understanding the large kinetic isotope effect of hydrogen tunneling in condensed phases by using double-well model systems,” The Journal of Physical Chemistry B, vol. 125, no. 22, pp. 5959–5970, 2021.
  36. L. Slocombe, M. Sacchi, and J. Al-Khalili, “An open quantum systems approach to proton tunnelling in dna,” Communications Physics, vol. 5, no. 1, p. 109, 2022.
  37. L. Slocombe, “Quantum effects in dna replication fidelity,” Ph.D. dissertation, University of Surrey, 2022.
  38. J. Zhang, R. Borrelli, and Y. Tanimura, “Proton tunneling in a two-dimensional potential energy surface with a non-linear system–bath interaction: Thermal suppression of reaction rate,” The Journal of Chemical Physics, vol. 152, no. 21, 2020.
  39. J. P. Bothma, J. B. Gilmore, and R. H. McKenzie, “The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment?” New Journal of Physics, vol. 12, no. 5, p. 055002, 2010.
  40. A. Trushechkin, “Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit,” Physical Review A, vol. 106, no. 4, p. 042209, 2022.
  41. C. L. Latune, “Steady state in ultrastrong coupling regime: perturbative expansion and first orders,” arXiv preprint arXiv:2110.02186, 2021.
  42. G. Timofeev and A. Trushechkin, “Hamiltonian of mean force in the weak-coupling and high-temperature approximations and refined quantum master equations,” International Journal of Modern Physics A, vol. 37, no. 20n21, p. 2243021, 2022.
  43. A. Gelzinis and L. Valkunas, “Analytical derivation of equilibrium state for open quantum system,” The Journal of Chemical Physics, vol. 152, no. 5, 2020.
  44. H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum brownian motion: The functional integral approach,” Physics reports, vol. 168, no. 3, pp. 115–207, 1988.
  45. Y.-F. Chiu, A. Strathearn, and J. Keeling, “Numerical evaluation and robustness of the quantum mean-force gibbs state,” Physical Review A, vol. 106, no. 1, p. 012204, 2022.
  46. A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W. Lovett, “Efficient non-markovian quantum dynamics using time-evolving matrix product operators,” Nature communications, vol. 9, no. 1, p. 3322, 2018.
  47. R. P. Feynman and F. Vernon Jr, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of physics, vol. 281, no. 1-2, pp. 547–607, 2000.
  48. N. Makri and D. E. Makarov, “Tensor propagator for iterative quantum time evolution of reduced density matrices. i. theory,” The Journal of chemical physics, vol. 102, no. 11, pp. 4600–4610, 1995.
  49. ——, “Tensor propagator for iterative quantum time evolution of reduced density matrices. ii. numerical methodology,” The Journal of chemical physics, vol. 102, no. 11, pp. 4611–4618, 1995.
  50. Y. Tanimura, “Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (heom),” The Journal of chemical physics, vol. 153, no. 2, 2020.
  51. M. Topaler and N. Makri, “System-specific discrete variable representations for path integral calculations with quasi-adiabatic propagators,” Chemical physics letters, vol. 210, no. 4-6, pp. 448–457, 1993.
  52. G. Barton, “Quantum mechanics of the inverted oscillator potential,” Annals of Physics, vol. 166, no. 2, pp. 322–363, 1986.
  53. V. Subramanyan, S. S. Hegde, S. Vishveshwara, and B. Bradlyn, “Physics of the inverted harmonic oscillator: From the lowest landau level to event horizons,” Annals of Physics, vol. 435, p. 168470, 2021.
  54. S. Baskoutas, A. Jannussis, and R. Mignani, “Quantum tunnelling of a damped and driven, inverted harmonic oscillator,” Journal of Physics A: Mathematical and General, vol. 26, no. 23, p. 7137, 1993.
  55. V. Montenegro, A. Ferraro, and S. Bose, “Nonlinearity induced entanglement stability in a qubit-oscillator system,” Physical Review A, vol. 90, p. 013829, 2014.
  56. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Reviews of Modern Physics, vol. 84, no. 2, p. 621, 2012.
  57. A. Trushechkin, M. Merkli, J. Cresser, and J. Anders, “Open quantum system dynamics and the mean force gibbs state,” AVS Quantum Science, vol. 4, no. 1, 2022.
  58. B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Physical Review D, vol. 45, no. 8, p. 2843, 1992.
  59. R. Feynman and A. Hibbs, “The path integral formulation of quantum mechanics,” McGraw-Hiill, New York, 1965.
  60. W. Sherman, “Summation of harmonics with random phase angles,” in Proceedings of the Institution of Electrical Engineers, vol. 119, no. 11.   IET, 1972, pp. 1643–1648.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube