Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Destroying the Event Horizon of Cold Dark Matter-Black Hole System (2401.11482v5)

Published 21 Jan 2024 in gr-qc

Abstract: Since the Weak Cosmic Censorship Conjecture was proposed, research on this conjecture has been ongoing. This paper explores the conjecture in black holes that are closer to those existing in the real universe (i.e., rotating black holes enveloped by dark matter). In this paper, we obtained a first-order corrected analytical solution for the black hole event horizon through an approximate solution. The validity of the first-order corrected analytical solution will be provided in the appendix. We conduct our study by introducing a test particle and a scalar field into the black hole. Our conclusions show that, in extremal case, both a test particle and a scalar field can disrupt the event horizon of the Kerr-like black hole; in near-extremal case, both a test particle and a scalar field can disrupt the event horizon of the Kerr-like black hole. When cold dark matter is not considered, the conclusion is consistent with previous research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. K. G. Begeman. H I rotation curves of spiral galaxies. I - NGC 3198. Astron. Astrophys., 223:47–60, 1989.
  2. Roelof Bottema and Jeroen P. E. Gerritsen. An investigation of the structure and kinematics of the spiral galaxy ngc 6503. Mon. Not. Roy. Astron. Soc., 290:585, 1997.
  3. F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta, 6:110–127, 1933.
  4. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J., 238:471, 1980.
  5. Theoretical predictions for dark matter detection in dwarf irregular galaxies with gamma rays. Phys. Rev. D, 98(8):083008, 2018.
  6. R. D. Blandford and R. Narayan. Cosmological applications of gravitational lensing. Ann. Rev. Astron. Astrophys., 30:311–358, 1992.
  7. Dark matter in compact stars. 7 2023.
  8. The Structure of cold dark matter halos. Astrophys. J., 462:563–575, 1996.
  9. A Universal density profile from hierarchical clustering. Astrophys. J., 490:493–508, 1997.
  10. Substructure and halo density profiles in a warm dark matter cosmology. Astrophys. J., 542:622–630, 2000.
  11. Halo formation in warm dark matter models. Astrophys. J., 556:93–107, 2001.
  12. Cold and fuzzy dark matter. Phys. Rev. Lett., 85:1158–1161, 2000.
  13. Single Mechanism for Generating Large Scale Structure and Providing Dark Missing Matter. Phys. Rev. Lett., 64:1084, 1990.
  14. Michael S. Turner. Coherent Scalar Field Oscillations in an Expanding Universe. Phys. Rev. D, 28:1243, 1983.
  15. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett., 84:3760–3763, 2000.
  16. Till the core collapses: the evolution and properties of self-interacting dark matter subhalos. 10 2023.
  17. N. Aghanim et al. Planck 2018 results. V. CMB power spectra and likelihoods. Astron. Astrophys., 641:A5, 2020.
  18. Simulations of x-ray clusters. Mon. Not. Roy. Astron. Soc., 275:720–740, 1995.
  19. The Inner structure of Lambda-CDM halos 3: Universality and asymptotic slopes. Mon. Not. Roy. Astron. Soc., 349:1039, 2004.
  20. The Diversity and Similarity of Cold Dark Matter Halos. Mon. Not. Roy. Astron. Soc., 402:21, 2010.
  21. Dark matter annihilation at the galactic center. Phys. Rev. Lett., 83:1719–1722, 1999.
  22. Dark matter distributions around massive black holes: A general relativistic analysis. Phys. Rev. D, 88(6):063522, 2013.
  23. Horizon growth of supermassive black hole seeds fed with collisional dark matter. Mon. Not. Roy. Astron. Soc., 443(3):2242–2251, 2014.
  24. The influence of dark matter halo onto the evolution of a supermassive black hole. Int. J. Mod. Phys. A, 20:4217, 2005.
  25. Fast growth of supermassive black holes in galaxies. Astron. Astrophys., 436:805, 2005.
  26. Rapid growth of high redshift black holes. Astrophys. J., 633:624–629, 2005.
  27. Black Holes and Galactic Density Cusps Spherically Symmetric Anisotropic Cusps. Astron. Astrophys., 522:A28, 2010.
  28. Black Holes and Galactic Density Cusps : From Black Hole to Bulge. Astron. Astrophys., 526:A13, 2011.
  29. R. Penrose. Gravitational collapse: The role of general relativity. Riv. Nuovo Cim., 1:252–276, 1969.
  30. Robert M. Wald. Gravitational collapse and cosmic censorship. pages 69–85, 10 1997.
  31. William E. East. Cosmic Censorship Upheld in Spheroidal Collapse of Collisionless Matter. Phys. Rev. Lett., 122(23):231103, 2019.
  32. Weak cosmic censorship with self-interacting scalar and bound on charge to mass ratio. JHEP, 03:045, 2021.
  33. R. Goswami and P. S. Joshi. Gravitational collapse of a self-interacting scalar field. Mod. Phys. Lett. A, 22:65–74, 2007.
  34. Weak cosmic censorship conjecture in higher-dimensional black holes with nonlinear electrodynamic sources. Phys. Lett. B, 817:136303, 2021.
  35. Extending the weak cosmic censorship conjecture to the charged Buchdahl star by employing the gedanken experiments. JCAP, 06:010, 2023.
  36. Towards the final fate of an unstable black string. Phys. Rev. D, 68:044001, 2003.
  37. Weak cosmic censorship conjecture for the (2+1)-dimensional charged BTZ black hole in the Einstein–Gauss–Bonnet Gravity. Phys. Dark Univ., 37:101082, 2022.
  38. Availability of the thermodynamics and weak cosmic censorship conjecture for a charged AdS black hole in the large dimension limit. Int. J. Theor. Phys., 60(11-12):4145–4161, 2021.
  39. Cross section, final spin and zoom-whirl behavior in high-energy black hole collisions. Phys. Rev. Lett., 103:131102, 2009.
  40. Evidence for violations of Weak Cosmic Censorship in black hole collisions in higher dimensions. JHEP, 03:111, 2022.
  41. New gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black hole. Eur. Phys. J. C, 80(9):890, 2020.
  42. Robert Wald. Gedanken experiments to destroy a black hole. Annals Phys., 82(2):548–556, 1974.
  43. Gedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspun. Phys. Rev. D, 96(10):104014, 2017.
  44. Gedanken Experiments to Destroy a BTZ Black Hole. Phys. Rev. D, 100(4):044043, 2019.
  45. Bogeun Gwak. Weak Cosmic Censorship in Kerr-Sen Black Hole under Charged Scalar Field. JCAP, 03:058, 2020.
  46. Weak cosmic censorship conjecture for the novel 4⁢D4𝐷4D4 italic_D charged Einstein-Gauss-Bonnet black hole with test scalar field and particle. Eur. Phys. J. C, 80(10):937, 2020.
  47. Destroying the event horizon of a rotating black-bounce black hole. Eur. Phys. J. C, 83(10):938, 2023.
  48. Over-spinning a black hole with a test body. Phys. Rev. Lett., 103:141101, 2009. [Erratum: Phys.Rev.Lett. 103, 209903 (2009)].
  49. Flowing along the edge: spinning up black holes in AdS spacetimes with test particles. Phys. Rev. D, 89(6):064065, 2014.
  50. Destroying a near-extremal Kerr-Newman black hole. Phys. Rev. D, 84:027501, 2011.
  51. B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.
  52. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019.
  53. Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019.
  54. Black hole immersed dark matter halo. Phys. Rev. D, 101(2):024029, 2020.
  55. Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett., 126(18):181301, 2021.
  56. Superradiance: New Frontiers in Black Hole Physics. Lect. Notes Phys., 906:pp.1–237, 2015.
  57. Test the weak cosmic supervision conjecture in dark matter-black hole system. Eur. Phys. J. C, 83(10):986, 2023.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com