Papers
Topics
Authors
Recent
2000 character limit reached

Disparity Driven Heterogeneous Nucleation in Finite-Size Adaptive Networks (2401.11443v1)

Published 21 Jan 2024 in nlin.AO

Abstract: Phase transitions are crucial in shaping the collective dynamics of a broad spectrum of natural systems across disciplines. Here, we report two distinct heterogeneous nucleation facilitating single-step and multi-step phase transitions to global synchronization in a finite-size adaptive network due to the trade-off between time scale adaptation and coupling strength disparities. Specifically, small intracluster nucleations coalesce either at the population interface or within the populations resulting in the two distinct phase transitions depending on the degree of the disparities. We find that the coupling strength disparity largely controls the nature of phase transition in the phase diagram irrespective of the adaptation disparity. We provide a mesoscopic description for the cluster dynamics using the collective coordinates approach that brilliantly captures the multicluster dynamics among the populations leading to distinct phase transitions. Further, we also deduce the upper bound for the coupling strength for the existence of two intraclusters explicitly in terms of adaptation and coupling strength disparities. These insights may have implications across domains ranging from neurological disorders to segregation dynamics in social networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. S. H. Strogatz, Exploring complex networks, nature 410, 268 (2001).
  2. M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
  3. F. Dörfler, M. Chertkov, and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences 110, 2005 (2013).
  4. D. Bagchi and P. K. Mohanty, Phase transition in an exactly solvable extinction model, Phys. Rev. E 84, 061921 (2011).
  5. M. Levy, Stock market crashes as social phase transitions, Journal of Economic Dynamics and Control 32, 137 (2008).
  6. J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Paths to synchronization on complex networks, Phys. Rev. Lett. 98, 034101 (2007).
  7. N. Caporale and Y. Dan, Spike timing-dependent plasticity: A hebbian learning rule, Annual Review of Neuroscience 31, 25 (2008), pMID: 18275283.
  8. M. M. Waldrop, Smart connections, Nature 503, 22 (2013).
  9. G. B. Morales, C. R. Mirasso, and M. C. Soriano, Unveiling the role of plasticity rules in reservoir computing, Neurocomputing 461, 705 (2021).
  10. R. Berner, S. Yanchuk, and E. Schöll, What adaptive neuronal networks teach us about power grids, Phys. Rev. E 103, 042315 (2021).
  11. S. R. Proulx, D. E. Promislow, and P. C. Phillips, Network thinking in ecology and evolution, Trends in Ecology & Evolution 20, 345 (2005).
  12. T. Gross, C. J. D. D’Lima, and B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett. 96, 208701 (2006).
  13. I. Rajapakse, M. Groudine, and M. Mesbahi, Dynamics and control of state-dependent networks for probing genomic organization, Proceedings of the National Academy of Sciences 108, 17257 (2011).
  14. L. Horstmeyer and C. Kuehn, Adaptive voter model on simplicial complexes, Phys. Rev. E 101, 022305 (2020).
  15. D. Antoniades and C. Dovrolis, Co-evolutionary dynamics in social networks: A case study of twitter, Computational Social Networks 2, 1 (2015).
  16. B. Jüttner and E. A. Martens, Complex dynamics in adaptive phase oscillator networks, Chaos: An Interdisciplinary Journal of Nonlinear Science 33, 053106 (2023).
  17. R. Berner, Patterns of synchrony in complex networks of adaptively coupled oscillators (Springer Theses, 2021).
  18. R. Berner, E. Scholl, and S. Yanchuk, Multiclusters in networks of adaptively coupled phase oscillators, SIAM Journal on Applied Dynamical Systems 18, 2227 (2019).
  19. M. Girvan and M. E. Newman, Community structure in social and biological networks, Proceedings of the national academy of sciences 99, 7821 (2002).
  20. M. E. Newman, Modularity and community structure in networks, Proceedings of the national academy of sciences 103, 8577 (2006).
  21. R. F. Betzel and D. S. Bassett, Multi-scale brain networks, NeuroImage 160, 73 (2017), functional Architecture of the Brain.
  22. D. Brockmann and D. Helbing, The hidden geometry of complex, network-driven contagion phenomena, Science 342, 1337 (2013).
  23. J. C. Flack, Multiple time-scales and the developmental dynamics of social systems, Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1802 (2012).
  24. J. Saramäki and E. Moro, From seconds to months: an overview of multi-scale dynamics of mobile telephone calls, The European Physical Journal B 88, 1 (2015).
  25. T. Evans and F. Fu, Opinion formation on dynamic networks: identifying conditions for the emergence of partisan echo chambers, Royal Society open science 5, 181122 (2018).
  26. G. A. Gottwald, Model reduction for networks of coupled oscillators, Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 053111 (2015).
  27. T. Aoki and T. Aoyagi, Co-evolution of phases and connection strengths in a network of phase oscillators, Phys. Rev. Lett. 102, 034101 (2009).
  28. T. Aoki and T. Aoyagi, Self-organized network of phase oscillators coupled by activity-dependent interactions, Phys. Rev. E 84, 066109 (2011).
  29. E. J. Hancock and G. A. Gottwald, Model reduction for kuramoto models with complex topologies, Physical Review E 98, 012307 (2018).
  30. L. D. Smith and G. A. Gottwald, Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit, Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (2020).
  31. C. J. Stam, Modern network science of neurological disorders, Nature Reviews Neuroscience 15, 683 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.