Papers
Topics
Authors
Recent
2000 character limit reached

Nonlocal Andreev transport through a quantum dot in a magnetic field: Interplay between Kondo, Zeeman, and Cooper-pair correlations (2401.11434v1)

Published 21 Jan 2024 in cond-mat.mes-hall and cond-mat.str-el

Abstract: We study the nonlocal magnetotransport through a strongly correlated quantum dot, connected to multiple terminals consisting of two normal and one superconducting (SC) leads. Specifically, we present a comprehensive view on the interplay between the crossed Andreev reflection (CAR), the Kondo effect, and the Zeeman splitting at zero temperature in the large SC gap limit. The ground state of this network shows an interesting variety, which varies continuously with the system parameters, such as the coupling strength $\Gamma_S{}$ between the SC lead and the quantum dot, the Coulomb repulsion $U$, the impurity level $\varepsilon_d{}$, and the magnetic field $b$. We show, using the many-body optical theorem which is derived from the Fermi-liquid theory, that the nonlocal conductance is determined by the transmission rate of the Cooper pairs $\mathcal{T}{\mathrm{CP}}{} = \frac{1}{4} \sin2 \Theta\, \sin2 \bigl(\delta{\uparrow}+ \delta_{\downarrow})$ and that of the Bogoliubov particles $\mathcal{T}{\mathrm{BG}}{}= \frac{1}{2}\sum{\sigma} \sin2 \delta_{\sigma}{}$. Here, $\delta_\sigma{}$ is the phase shift of the renormalized Bogoliubov particles, and $\Theta \equiv \cot{-1} (\xi_d{}/ \Gamma_S{})$ is the Bogoliubov-rotation angle in the Nambu pseudo spin space, with $\xi_d{} =\varepsilon_d{}+U/2$. It is also demonstrated, using Wilson's numerical renormalization group approach, that the CAR is enhanced in the crossover region between the Kondo regime and the SC-proximity-dominated regime at zero magnetic field. The magnetic fields induce another crossover between the Zeeman-dominated regime and the SC-dominated regime. We find that the CAR is enhanced and becomes less sensitive to magnetic fields in the SC-dominated regime close to the crossover region spreading over the angular range of $\pi/4 \lesssim \Theta \lesssim 3\pi/4$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. D. S. Golubev and A. D. Zaikin, Phys. Rev. B 76, 184510 (2007).
  2. K. Wrześniewski and I. Weymann, Phys. Rev. B 96, 195409 (2017).
  3. K. P. Wójcik and I. Weymann, Phys. Rev. B 99, 045120 (2019).
  4. Z. Wang and X. Hu, Phys. Rev. Lett. 106, 037002 (2011).
  5. T. Yokoyama and Y. V. Nazarov, Phys. Rev. B 92, 155437 (2015).
  6. P. Cadden-Zimansky and V. Chandrasekhar, Phys. Rev. Lett. 97, 237003 (2006).
  7. J. Wei and V. Chandrasekhar, Nature Physics 6, 494 (2010).
  8. D. S. Golubev and A. D. Zaikin, Phys. Rev. B 99, 144504 (2019).
  9. T. Yoshioka and Y. Ohashi, J. Phys. Soc. Jpn. 69, 1812 (2000).
  10. A. Koga, Phys. Rev. B 87, 115409 (2013).
  11. V. Pokorný and M. Žonda, Phys. Rev. B 107, 155111 (2023).
  12. A. Oguri and A. C. Hewson, Phys. Rev. B 97, 035435 (2018).
  13. P. Trocha and K. Wrześniewski, J. Phys.: Condens. Matter 30, 305303 (2018).
  14. I. Weymann and P. Trocha, Phys. Rev. B 89, 115305 (2014).
  15. K. P. Wójcik and I. Weymann, Phys. Rev. B 89, 165303 (2014).
  16. I. Weymann and K. P. Wójcik, Phys. Rev. B 92, 245307 (2015).
  17. H.-K. Zhao and J. Wang, Phys. Rev. B 64, 094505 (2001).
  18. P. Nozières, J. Low Temp. Phys. 17, 31 (1974).
  19. K. Yamada, Prog. Theor. Phys. 53, 970 (1975a).
  20. K. Yamada, Prog. Theor. Phys. 54, 316 (1975b).
  21. H. Shiba, Prog. Theor. Phys. 54, 967 (1975).
  22. A. Yoshimori, Prog. Theor. Phys. 55, 67 (1976).
  23. Y. Blanter and M. Büttiker, Physics Reports 336, 1 (2000).
  24. R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 (2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.