Sensory adaptation in a continuum model of bacterial chemotaxis -- working range, cost-accuracy relation, and coupled systems (2401.11341v1)
Abstract: Sensory adaptation enables organisms to adjust their perception in a changing environment. A paradigm is bacterial chemotaxis, where the output activity of chemoreceptors is adapted to different baseline concentrations via receptor methylation. The range of internal receptor states limits the stimulus magnitude to which these systems can adapt. Here, we employ a highly idealized, Langevin-equation based model to study how the finite range of state variables affects the adaptation accuracy and the energy dissipation in individual and coupled systems. Maintaining an adaptive state requires constant energy dissipation. We show that the steady-state dissipation rate increases approximately linearly with the adaptation accuracy for varying stimulus magnitudes in the so-called perfect adaptation limit. This result complements the well-known logarithmic cost-accuracy relationship for varying chemical driving. Next, we study linearly coupled pairs of sensory units. We find that the interaction reduces the dissipation rate per unit and affects the overall cost-accuracy relationship. A coupling of the slow methylation variables results in a better accuracy than a coupling of activities. Overall, the findings highlight the significance of both the working range and collective operation mode as crucial design factors that impact the accuracy and energy expenditure of molecular adaptation networks.
- S. Laughlin, The role of sensory adaptation in the retina, J. Exp. Biol. 146, 39 (1989).
- K. Nakatani, T. Tamura, and K. W. Yau, Light adaptation in retinal rods of the rabbit and two other nonprimate mammals., J. Gen. Physiol. 97, 413 (1991).
- H. C. Berg, E. coli in Motion (Springer, 2004).
- H. Szurmant and G. Ordal, Diversity in chemotaxis mechanisms among the bacteria and archaea., Microbiol. Mol. Biol. Rev. 68, 301 (2004).
- U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, 2019).
- J. Adler, Chemotaxis in bacteria, Science 153, 708 (1966).
- P. Cluzel, M. Surette, and S. Leibler, An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells, Science 287, 1652 (2000).
- M. S. Springer, M. F. Goy, and J. Adler, Protein methylation in behavioural control mechanisms and in signal transduction., Nature 280, 279 (1979).
- H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by three-dimensional tracking, Nature 239, 500 (1972).
- S. H. Kim, W. Wang, and K. K. Kim, Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity, Proc. Natl. Acad. Sci. USA 99, 11611 (2002).
- C. A. Haselwandter and N. S. Wingreen, The role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices, PLoS Comput. Biol. 10, e1003932 (2014).
- V. Sourjik and H. Berg, Functional interactions between receptors in bacterial chemotaxis, Nature 428, 437 441 (2004).
- V. Sourjik, Receptor clustering and signal processing in E. coli chemotaxis, Trends Microbiol. 12, 569 (2004).
- M. Skoge, Y. Meir, and N. S. Wingreen, Dynamics of cooperativity in chemical sensing among cell-surface receptors, Phys. Rev. Lett. 107, 178101 (2011).
- H. Le Moual, T. Quang, and D. E. Koshland, Methylation of the Escherichia coli chemotaxis receptors: intra-and interdimer mechanisms, Biochem. 36, 13441 (1997).
- M. Li and G. L. Hazelbauer, Adaptational assistance in clusters of bacterial chemoreceptors, Mol. Microbiol. 56, 1617 (2005).
- N. Barkai and S. Leibler, Robustness in simple biochemical networks, Nature 387, 913 (1997).
- R. G. Endres and N. S. Wingreen, Precise adaptation in bacterial chemotaxis through “assistance neighborhoods”, Proc. Natl. Acad. Sci. USA 103, 13040 (2006).
- Y. Tu, Quantitative modeling of bacterial chemotaxis: Signal amplification and accurate adaptation, Annu. Rev. Biophys. 42, 337 (2013), pMID: 23451887.
- Y. Tu, T. S. Shimizu, and H. C. Berg, Modeling the chemotactic response of Escherichia coli to time-varying stimuli, Proc. Natl. Acad. Sci. USA 105, 14855 (2008).
- T. Shimizu, Y. Tu, and H. Berg, A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli, Mol. Syst. Biol. 6, 382 (2010).
- W. Bialek and S. Setayeshgar, Physical limits to biochemical signaling, Proc. Natl. Acad. Sci. USA 102, 10040 (2005).
- F. Tostevin and P. R. ten Wolde, Mutual information between input and output trajectories of biochemical networks, Phys. Rev. Lett. 102, 218101 (2009).
- D. Hartich, A. C. Barato, and U. Seifert, Nonequilibrium sensing and its analogy to kinetic proofreading, New J. Phys. 17, 055026 (2015).
- G. Lan and Y. Tu, The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop, J. R. Soc. Interface 10, 20130489 (2013).
- S. W. Wang, Y. Lan, and L. H. Tang, Energy dissipation in an adaptive molecular circuit, J. Stat. Mech.: Theory Exp. 2015 (7), P07025.
- M. Baiesi and C. Maes, Life efficiency does not always increase with the dissipation rate, J. Phys. Commun. 2, 045017 (2018).
- R. G. Endres and N. S. Wingreen, Accuracy of direct gradient sensing by cell-surface receptors, Prog. Biophys. Mol. 100, 33 (2009).
- Y. Tu and W. J. Rappel, Adaptation in living systems, Annu. Rev. Condens. Matter Phys. 9 (2018).
- N. V. Kampen, Stochastic Processes in Physics and Chemistry (North Holland, 2007).
- U. Seifert, Stochastic thermodynamics. fluctuation theorems and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).
- K. Sekimoto, Stochastic Energetics (Springer Berlin, Heidelberg, 2010).
- T. Harada and S. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-response relation, Phys. Rev. Lett. 95, 130602 (2005).
- P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability (Springer Berlin Heidelberg, 2011).
- D. Grebenkov, Probability distribution of the boundary local time of reflected brownian motion in euclidean domains, Phys. Rev. E 100, 062110 (2019).
- B. A. Mello and Y. Tu, Perfect and near-perfect adaptation in a model of bacterial chemotaxis, Biophys. J. 84, 2943 (2003).
- G. Wadhams and J. Armitage, Making sense of it all: bacterial chemotaxis, Nat. Rev. Mol. Cell Biol. 5, 1024 (2005).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.