Papers
Topics
Authors
Recent
2000 character limit reached

Holographic dictionary from bulk reduction (2401.11223v1)

Published 20 Jan 2024 in hep-th

Abstract: We propose a holographic dictionary which comes from reducing the bulk theories in an asymptotically flat spacetime to its null infinity. A general boundary theory is characterized by a fundamental field, an infinite tower of descendant fields, constraints among the fundamental field and its descendants as well as a symplectic form. For the Carrollian diffeomorphisms, we can construct the corresponding Hamiltonians which are also the fluxes from the bulk, and whose quantum operators realize this algebra with a divergent central charge. This central charge reflects the propagating degrees of freedom and can be regularized. For the spinning theory, we need a helicity flux operator to close the algebra which relates to the duality transformation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. A. Strominger, “On BMS Invariance of Gravitational Scattering,” JHEP 07 (2014) 152, 1312.2229.
  2. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” 1703.05448.
  3. T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,” JHEP 10 (2014) 112, 1407.3789.
  4. S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96 (2017), no. 6, 065022, 1705.01027.
  5. L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129 (2022), no. 7, 071602, 2202.04702.
  6. A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128 (2022), no. 24, 241601, 2202.08438.
  7. L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107 (2023), no. 12, 126027, 2212.12553.
  8. T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft graviton theorem,” JHEP 05 (2015) 151, 1401.7026.
  9. A. Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft Theorems,” JHEP 01 (2016) 086, 1411.5745.
  10. S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116 (2016), no. 23, 231301, 1601.00921.
  11. S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D 96 (2017), no. 6, 065026, 1701.00049.
  12. W.-B. Liu and J. Long, “Symmetry group at future null infinity: Scalar theory,” Phys. Rev. D 107 (2023), no. 12, 126002, 2210.00516.
  13. W.-B. Liu and J. Long, “Symmetry group at future null infinity II: Vector theory,” JHEP 07 (2023) 152, 2304.08347.
  14. W.-B. Liu and J. Long, “Symmetry group at future null infinity III: Gravitational theory,” JHEP 10 (2023) 117, 2307.01068.
  15. W.-B. Liu, J. Long, and X.-H. Zhou, “Quantum flux operators in higher spin theories,” 2311.11361.
  16. A. Li, W.-B. Liu, J. Long, and R.-Z. Yu, “Quantum flux operators for Carrollian diffeomorphism in general dimensions,” JHEP 11 (2023) 140, 2309.16572.
  17. J. M. Lévy-Leblond, “Une nouvelle limite non-relativiste du groupe de Poincaré,” Ann. Inst. H Poincaré 3 (1965), no. 1, 1–12.
  18. N. Gupta, “On an analogue of the galilei group,” Nuovo Cimento Della Societa Italiana Di Fisica A-nuclei Particles and Fields 44 (1966) 512–517.
  19. M. Henneaux, “Geometry of Zero Signature Space-times,” Bull. Soc. Math. Belg. 31 (1979) 47–63.
  20. L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos, and K. Siampos, “Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids,” Class. Quant. Grav. 35 (2018), no. 16, 165001, 1802.05286.
  21. L. Ciambelli, R. G. Leigh, C. Marteau, and P. M. Petropoulos, “Carroll Structures, Null Geometry and Conformal Isometries,” Phys. Rev. D 100 (2019), no. 4, 046010, 1905.02221.
  22. L. Donnay and C. Marteau, “Carrollian Physics at the Black Hole Horizon,” Class. Quant. Grav. 36 (2019), no. 16, 165002, 1903.09654.
  23. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A 269 (1962) 21–52.
  24. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A 270 (1962) 103–126.
  25. R. Sachs, “Asymptotic symmetries in gravitational theory,” Phys. Rev. 128 (1962) 2851–2864.
  26. G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” JHEP 05 (2010) 062, 1001.1541.
  27. G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, 1106.0213.
  28. M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton theorem,” Phys. Rev. D 90 (2014), no. 12, 124028, 1408.2228.
  29. M. Campiglia and A. Laddha, “New symmetries for the Gravitational S-matrix,” JHEP 04 (2015) 076, 1502.02318.
  30. M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon theorem,” JHEP 07 (2015) 115, 1505.05346.
  31. M. Campiglia and J. Peraza, “Generalized BMS charge algebra,” Phys. Rev. D 101 (2020), no. 10, 104039, 2002.06691.
  32. C. Duval, G. W. Gibbons, and P. A. Horvathy, “Conformal carroll groups and bms symmetry,” Classical and Quantum Gravity 31 (apr, 2014) 092001.
  33. C. Duval, G. W. Gibbons, and P. A. Horvathy, “Conformal carroll groups,” Journal of Physics A: Mathematical and Theoretical 47 (aug, 2014) 335204.
  34. G. Satishchandran and R. M. Wald, “Asymptotic behavior of massless fields and the memory effect,” Phys. Rev. D 99 (2019), no. 8, 084007, 1901.05942.
  35. X. Bekaert and B. Oblak, “Massless scalars and higher-spin BMS in any dimension,” JHEP 11 (2022) 022, 2209.02253.
  36. A. Ashtekar and M. Streubel, “Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity,” Proc. Roy. Soc. Lond. A 376 (1981) 585–607.
  37. A. Ashtekar, “Asymptotic Quantization of the Gravitational Field,” Phys. Rev. Lett. 46 (1981) 573–576.
  38. R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993), no. 8, R3427–R3431, gr-qc/9307038.
  39. V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50 (1994) 846–864, gr-qc/9403028.
  40. R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity and other theories of gravity,” Phys. Rev. D 61 (2000) 084027, gr-qc/9911095.
  41. E. E. Flanagan and D. A. Nichols, “Conserved charges of the extended Bondi-Metzner-Sachs algebra,” Phys. Rev. D 95 (2017), no. 4, 044002, 1510.03386.
  42. G. Compère, R. Oliveri, and A. Seraj, “The Poincaré and BMS flux-balance laws with application to binary systems,” Journal of High Energy Physics 2020 (2020), no. 10, 116, 1912.03164.
  43. It is worth noting that the superrotations in our definition from Carrollian diffeomorphisms have removed the part like the supertranslations compared to the standard one.
  44. S. W. Hawking, “Zeta function regularization of path integrals in curved spacetime,” Communications in Mathematical Physics 55 (June, 1977) 133–148.
  45. World Scientific Publishing, Singapore, 1994.
  46. I. Polterovich, “Heat invariants of riemannian manifolds,” Israel Journal of Mathematics 119 (1999) 239–252.
  47. D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388 (2003) 279–360, hep-th/0306138.
  48. D. Birmingham, “Conformal anomaly in spherical spacetimes,” Phys.Rev.D 36 (Nov., 1987) 3037–3047.
  49. For more details about the regularization of the Dirac delta δ(d−2)⁢(0)superscript𝛿𝑑20\delta^{(d-2)}(0)italic_δ start_POSTSUPERSCRIPT ( italic_d - 2 ) end_POSTSUPERSCRIPT ( 0 ) on Sd−2superscript𝑆𝑑2S^{d-2}italic_S start_POSTSUPERSCRIPT italic_d - 2 end_POSTSUPERSCRIPT, we refer readers to [16].
  50. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,,” Proc. Roy. Soc. Lond. A 133 (1931), no. 821, 60–72.
  51. S. Deser and C. Teitelboim, “Duality Transformations of Abelian and Nonabelian Gauge Fields,” Phys. Rev. D 13 (1976) 1592–1597.
  52. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: Helicity, spin, momentum, and angular momentum,” New J. Phys. 15 (2013) 033026, 1208.4523.
  53. Y. Hamada, M.-S. Seo, and G. Shiu, “Electromagnetic Duality and the Electric Memory Effect,” JHEP 02 (2018) 046, 1711.09968.
  54. V. Hosseinzadeh, A. Seraj, and M. M. Sheikh-Jabbari, “Soft Charges and Electric-Magnetic Duality,” JHEP 08 (2018) 102, 1806.01901.
  55. A. Seraj and B. Oblak, “Precession Caused by Gravitational Waves,” Phys. Rev. Lett. 129 (2022), no. 6, 061101, 2203.16216.
  56. M. Henneaux and C. Teitelboim, “Duality in linearized gravity,” Phys. Rev. D 71 (2005) 024018, gr-qc/0408101.
  57. B. Julia, J. Levie, and S. Ray, “Gravitational duality near de Sitter space,” JHEP 11 (2005) 025, hep-th/0507262.
  58. C. W. Bunster, S. Cnockaert, M. Henneaux, and R. Portugues, “Monopoles for gravitation and for higher spin fields,” Phys. Rev. D 73 (2006) 105014, hep-th/0601222.
  59. S. Ramaswamy and A. Sen, “Dual‐mass in general relativity,” Journal of Mathematical Physics 22 (1981) 2612–2619.
  60. A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” Phys. Rev. Lett. 116 (2016), no. 3, 031602, 1509.00543.
  61. L. Freidel and D. Pranzetti, “Electromagnetic duality and central charge,” Phys. Rev. D 98 (2018), no. 11, 116008, 1806.03161.
  62. H. Godazgar, M. Godazgar, and C. N. Pope, “Subleading BMS charges and fake news near null infinity,” JHEP 01 (2019) 143, 1809.09076.
  63. H. Godazgar, M. Godazgar, and C. N. Pope, “New dual gravitational charges,” Phys. Rev. D 99 (2019), no. 2, 024013, 1812.01641.
  64. H. Godazgar, M. Godazgar, and C. N. Pope, “Tower of subleading dual BMS charges,” JHEP 03 (2019) 057, 1812.06935.
  65. E. T. Newman and T. W. J. Unti, “Behavior of Asymptotically Flat Empty Spaces,” J. Math. Phys. 3 (1962), no. 5, 891.
  66. G. Barnich and P.-H. Lambert, “A Note on the Newman-Unti group and the BMS charge algebra in terms of Newman-Penrose coefficients,” Adv. Math. Phys. 2012 (2012) 197385, 1102.0589.
  67. P. Kravchuk and D. Simmons-Duffin, “Light-ray operators in conformal field theory,” JHEP 11 (2018) 102, 1805.00098.
  68. C. Córdova and S.-H. Shao, “Light-ray Operators and the BMS Algebra,” Phys. Rev. D 98 (2018), no. 12, 125015, 1810.05706.
  69. G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, “Generalizing event shapes: in search of lost collider time,” JHEP 08 (2022) 188, 2106.14899.
  70. G. P. Korchemsky and A. Zhiboedov, “On the light-ray algebra in conformal field theories,” JHEP 02 (2022) 140, 2109.13269.
  71. G. Compère, A. Fiorucci, and R. Ruzziconi, “Superboost transitions, refraction memory and super-Lorentz charge algebra,” JHEP 11 (2018) 200, 1810.00377. [Erratum: JHEP 04, 172 (2020)].
  72. G. Compère, A. Fiorucci, and R. Ruzziconi, “The ΛΛ\Lambdaroman_Λ-BMS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT charge algebra,” JHEP 10 (2020) 205, 2004.10769.
  73. L. Donnay, K. Nguyen, and R. Ruzziconi, “Loop-corrected subleading soft theorem and the celestial stress tensor,” JHEP 09 (2022) 063, 2205.11477.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.