Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Valley filtering and valley valves in irradiated pristine graphene (2401.11136v1)

Published 20 Jan 2024 in cond-mat.mes-hall

Abstract: We theoretically study valley-filtering in pristine graphene irradiated by bicircular counter-rotating laser drive. The dynamical symmetry of the graphene and laser drive disrupts graphene's inversion symmetry, which results distinct quasi-energy states and Floquet band occupations in the two valleys. Controlling the relative phase between the bicircular laser drive ultimately allows to blocks the contribution from one valley while allowing the opposite valley currents in the system. For practical realization of valley-based device, we propose configurational setup for valley filters and valley valve consisting of two graphene nanoribbons irradiated by two bicircular counter-rotating laser drives with a relative phase shift. It is observed that the relative phase between the two bicircular laser drives offer a control knob to generate valley-selective currents and transport responses with very high efficiency by an all-optical way. In addition, our findings about valley filter and valley valve are robust against moderate disorder and modest changes in driving laser parameters. Present work opens an avenue to realise light-based valleytronics devices in reality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99, 236809 (2007).
  2. N. Rohling and G. Burkard, Universal quantum computing with spin and valley states, New Journal of Physics 14, 083008 (2012).
  3. E. A. Laird, F. Pei, and L. P. Kouwenhoven, A valley–spin qubit in a carbon nanotube, Nature Nanotechnology 8, 565 (2013).
  4. K. F. Mak, D. Xiao, and J. Shan, Light–valley interactions in 2d semiconductors, Nature Photonics 12, 451 (2018).
  5. W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77, 235406 (2008).
  6. A. Rycerz, J. Tworzydło, and C. Beenakker, Valley filter and valley valve in graphene, Nature Physics 3, 172 (2007).
  7. D. Gunlycke and C. T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106, 136806 (2011).
  8. M. M. Grujić, M. i. c. v. Tadić, and F. m. c. M. Peeters, Spin-valley filtering in strained graphene structures with artificially induced carrier mass and spin-orbit coupling, Phys. Rev. Lett. 113, 046601 (2014).
  9. A. Kundu, H. A. Fertig, and B. Seradjeh, Floquet-engineered valleytronics in dirac systems, Phys. Rev. Lett. 116, 016802 (2016).
  10. R. Tamura, Origins of valley current reversal in partially overlapped graphene layers, Journal of the Physical Society of Japan 92, 114706 (2023).
  11. S. Tapar and B. Muralidharan, Effectuating tunable valley selection via multiterminal monolayer graphene devices, Phys. Rev. B 107, 205415 (2023).
  12. W. Ortiz, N. Szpak, and T. Stegmann, Graphene nanoelectromechanical systems as valleytronic devices, Phys. Rev. B 106, 035416 (2022).
  13. L. E. Golub and S. A. Tarasenko, Valley polarization induced second harmonic generation in graphene, Phys. Rev. B 90, 201402(R) (2014).
  14. A. Gómez-León and G. Platero, Floquet-bloch theory and topology in periodically driven lattices, Phys. Rev. Lett. 110, 200403 (2013).
  15. T. Oka and H. Aoki, Photovoltaic hall effect in graphene, Phys. Rev. B 79, 081406(R) (2009).
  16. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
  17. M. Lababidi, I. I. Satija, and E. Zhao, Counter-propagating edge modes and topological phases of a kicked quantum hall system, Phys. Rev. Lett. 112, 026805 (2014).
  18. P. M. Perez-Piskunow, L. E. F. Foa Torres, and G. Usaj, Hierarchy of floquet gaps and edge states for driven honeycomb lattices, Phys. Rev. A 91, 043625 (2015).
  19. A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).
  20. T. Morimoto, H. C. Po, and A. Vishwanath, Floquet topological phases protected by time glide symmetry, Phys. Rev. B 95, 195155 (2017).
  21. P. Molignini, W. Chen, and R. Chitra, Generating quantum multicriticality in topological insulators by periodic driving, Phys. Rev. B 101, 165106 (2020).
  22. R.-X. Zhang and Z.-C. Yang, Tunable fragile topology in floquet systems, Phys. Rev. B 103, L121115 (2021).
  23. Y. Ikeda, S. Kitamura, and T. Morimoto, Photocurrent induced by a bicircular light drive in centrosymmetric systems, Phys. Rev. Lett. 131, 096301 (2023).
  24. A. Kundu, H. Fertig, and B. Seradjeh, Effective theory of floquet topological transitions, Physical Review Letters 113, 10.1103/physrevlett.113.236803 (2014).
  25. N. Rana and G. Dixit, All-optical ultrafast valley switching in two-dimensional materials, Phys. Rev. Appl. 19, 034056 (2023).
  26. M. Mrudul and G. Dixit, Controlling valley-polarisation in graphene via tailored light pulses, Journal of Physics B 54, 224001 (2021a).
  27. N. Rana, M. S. Mrudul, and G. Dixit, Generation of circularly polarized high harmonics with identical helicity in two-dimensional materials, Phys. Rev. Appl. 18, 064049 (2022).
  28. S. Sharma, D. Gill, and S. Shallcross, Giant and controllable valley currents in graphene by double pumped thz light, Nano Letters 23, 10305 (2023).
  29. H. K. Kelardeh, U. Saalmann, and J. M. Rost, Ultrashort laser-driven dynamics of massless dirac electrons generating valley polarization in graphene, Phys. Rev. Res. 4, L022014 (2022).
  30. M. S. Mrudul and G. Dixit, High-harmonic generation from monolayer and bilayer graphene, Phys. Rev. B 103, 094308 (2021b).
  31. R. Kumari, B. Seradjeh, and A. Kundu, Josephson-current signatures of unpaired floquet majorana bound states (2023), arXiv:2301.07707 [cond-mat.mes-hall] .
  32. S. Kohler, J. Lehmann, and P. Hanggi, Driven quantum transport on the nanoscale, Physics Reports 406, 379 (2005).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: