Papers
Topics
Authors
Recent
2000 character limit reached

Low Complexity Turbo SIC-MMSE Detection for Orthogonal Time Frequency Space Modulation

Published 19 Jan 2024 in cs.IT, eess.SP, and math.IT | (2401.11058v1)

Abstract: Recently, orthogonal time frequency space (OTFS) modulation has garnered considerable attention due to its robustness against doubly-selective wireless channels. In this paper, we propose a low-complexity iterative successive interference cancellation based minimum mean squared error (SIC-MMSE) detection algorithm for zero-padded OTFS (ZP-OTFS) modulation. In the proposed algorithm, signals are detected based on layers processed by multiple SIC-MMSE linear filters for each sub-channel, with interference on the targeted signal layer being successively canceled either by hard or soft information. To reduce the complexity of computing individual layer filter coefficients, we also propose a novel filter coefficients recycling approach in place of generating the exact form of MMSE filter weights. Moreover, we design a joint detection and decoding algorithm for ZP-OTFS to enhance error performance. Compared to the conventional SIC-MMSE detection, our proposed algorithms outperform other linear detectors, e.g., maximal ratio combining (MRC), for ZP-OTFS with up to 3 dB gain while maintaining comparable computation complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Q. Li, J. Yuan, and H. Lin, “Iterative MMSE Detection for Orthogonal Time Frequency Space Modulation,” in 2022 IEEE International Conference on Communications Workshops, ICC Workshops 2022.   Institute of Electrical and Electronics Engineers Inc., 2022, pp. 945–950.
  2. R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” IEEE Wireless Communications and Networking Conference, WCNC, vol. 17, no. 10, pp. 6501–6515, 2017.
  3. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp. 6501–6515, 2018.
  4. Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, “Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform,” IEEE Wireless Communications, vol. 28, no. 4, pp. 136–144, 2021.
  5. S. Li, W. Yuan, Z. Wei, J. Yuan, B. Bai, D. W. K. Ng, and Y. Xie, “Hybrid MAP and PIC detection for OTFS modulation,” IEEE Transactions on Vehicular Technology, vol. 70, no. 7, pp. 7193–7198, 2021.
  6. K. R. Murali and A. Chockalingam, “On OTFS Modulation for High-Doppler Fading Channels,” in 2018 Information Theory and Applications Workshop (ITA), 2018, pp. 1–10.
  7. W. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, “A simple variational bayes detector for orthogonal time frequency space (OTFS) modulation,” IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7976–7980, 2020.
  8. S. P., G. A., M. H.B., and B. R., “Low-Complexity ZF/MMSE MIMO-OTFS Receivers for High-Speed Vehicular Communication,” IEEE Open Journal of the Communications Society, vol. 3, p. 209 – 227, 2022.
  9. S. Tiwari, S. S. Das, and V. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Communications Letters, vol. 23, no. 12, pp. 2205–2209, 2019.
  10. S. S. Das, S. Tiwari, V. Rangamgari, and S. C. Mondal, “Performance of iterative successive interference cancellation receiver for LDPC coded OTFS,” in 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2020, pp. 1–6.
  11. F. Long, K. Niu, C. Dong, and J. Lin, “Low complexity iterative LMMSE-PIC equalizer for OTFS,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
  12. T. Thaj and E. Viterbo, “Low complexity iterative rake decision feedback equalizer for zero-padded otfs systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 606–15 622, 2020.
  13. S. Li, W. Yuan, Z. Wei, and J. Yuan, “Cross Domain Iterative Detection for Orthogonal Time Frequency Space Modulation,” IEEE Transactions on Wireless Communications, pp. 1–30, 2021.
  14. P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” in 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167), 1998, pp. 295–300.
  15. H. Lee, B. Lee, and I. Lee, “Iterative detection and decoding with an improved V-BLAST for MIMO-OFDM systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 504–513, 2006.
  16. J. Wang and S. Li, “Soft versus hard interference cancellation in MMSE OSIC MIMO detector: A comparative study,” in 2007 4th International Symposium on Wireless Communication Systems, 2007, pp. 642–646.
  17. H. Lee and I. Lee, “New approach for coded layered space-time OFDM systems,” IEEE International Conference on Communications, vol. 1, no. C, pp. 608–612, 2005.
  18. J. Wang and S. Li, “Soft versus hard interference cancellation in MMSE OSIC MIMO detector: A comparative study,” Proceedings of 4th IEEE Internatilonal Symposium on Wireless Communication Systems 2007, ISWCS, no. 4, pp. 642–646, 2007.
  19. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC ’93 - IEEE International Conference on Communications, vol. 2, 1993, pp. 1064–1070 vol.2.
  20. G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for turbo-detection,” in in Proc. Intern. Conf. on Telecomm, 1994, pp. 259–263.
  21. S. Ahmed and S. Kim, “Efficient SIC-MMSE MIMO detection with three iterative loops,” AEU - International Journal of Electronics and Communications, vol. 72, pp. 65–71, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1434841116312833
  22. L. Fang, L. Xu, Q. Guo, D. Huang, and S. Nordholm, “A low complexity iterative soft-decision feedback MMSE-PIC detection algorithm for massive MIMO,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 2939–2943.
  23. C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation,” IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp. 1754–1765, 2011.
  24. A. Chatterjee, V. Rangamgari, S. Tiwari, and S. S. Das, “Nonorthogonal Multiple Access with Orthogonal Time-Frequency Space Signal Transmission,” IEEE Systems Journal, vol. 15, no. 1, pp. 383–394, 3 2021.
  25. P. Raviteja, K. T. Phan, and Y. Hong, “Embedded Pilot-Aided Channel Estimation for OTFS in Delay-Doppler Channels,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4906–4917, 2019.
  26. C. Shen, J. Yuan, and H. Lin, “Error Performance of Rectangular Pulse-Shaped OTFS With Practical Receivers,” IEEE Wireless Communications Letters, vol. 11, no. 12, pp. 2690–2694, 12 2022.
  27. H. Lin and J. Yuan, “Orthogonal Delay-Doppler Division Multiplexing Modulation,” IEEE Transactions on Wireless Communications, 2022.
  28. P. Raviteja and E. Viterbo, “Practical Pulse-Shaping Waveforms for Reduced-Cyclic-Prefix OTFS,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 957–961, 2019.
  29. P. A. Bello, “Characterization of Randomly Time-Variant Linear Channels,” IEEE Transactions on Communications Systems, vol. 11, no. 4, pp. 360–393, 1963.
  30. Q. J. Y. H. P. Raviteja, Khoa T. Phan and E. Viterbo, “Low-Complexity Iterative Detection for Orthogonal Time Frequency Space Modulation,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2227–2242, 2022.
  31. T. Thaj and E. Viterbo, “Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS Systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15 606–15 622, 2020.
  32. M. Witzke, S. Bäro, F. Schreckenbach, and J. Hagenauer, “Iterative detection of MIMO signals with linear detectors,” Conference Record of the Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 289–293, 2002.
  33. T. T. B. Nguyen, T. N. Tan, and H. Lee, “Efficient QC-LDPC encoder for 5G new radio,” Electronics (Switzerland), vol. 8, no. 6, 2019.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.