Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Synergy Between Optimal Transport Theory and Multi-Agent Reinforcement Learning (2401.10949v2)

Published 18 Jan 2024 in cs.MA, cs.LG, cs.SY, and eess.SY

Abstract: This paper explores the integration of optimal transport (OT) theory with multi-agent reinforcement learning (MARL). This integration uses OT to handle distributions and transportation problems to enhance the efficiency, coordination, and adaptability of MARL. There are five key areas where OT can impact MARL: (1) policy alignment, where OT's Wasserstein metric is used to align divergent agent strategies towards unified goals; (2) distributed resource management, employing OT to optimize resource allocation among agents; (3) addressing non-stationarity, using OT to adapt to dynamic environmental shifts; (4) scalable multi-agent learning, harnessing OT for decomposing large-scale learning objectives into manageable tasks; and (5) enhancing energy efficiency, applying OT principles to develop sustainable MARL systems. This paper articulates how the synergy between OT and MARL can address scalability issues, optimize resource distribution, align agent policies in cooperative environments, and ensure adaptability in dynamically changing conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. A. Wong, T. Bäck, A. V. Kononova, and A. Plaat, “Deep multiagent reinforcement learning: Challenges and directions,” Artificial Intelligence Review, vol. 56, no. 6, pp. 5023–5056, 2023.
  2. G. Peyré, M. Cuturi et al., “Computational optimal transport: With applications to data science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.
  3. L. V. Kantorovich, “On the translocation of masses,” Journal of Mathematical Sciences, vol. 133, no. 4, pp. 1381–1382, 2006.
  4. A. Galichon, “The unreasonable effectiveness of optimal transport in economics,” HAL, Tech. Rep., 2021.
  5. ——, “A survey of some recent applications of optimal transport methods to econometrics,” The Econometrics Journal, vol. 20, no. 2, pp. C1–C11, 2017.
  6. N. Bonneel and J. Digne, “A survey of optimal transport for computer graphics and computer vision,” in Computer Graphics Forum, vol. 42, no. 2, 2023, pp. 439–460.
  7. C. Wen, “Conformal geometry and optimal transport for computer vision and geometric modeling,” Ph.D. dissertation, State University of New York at Stony Brook, 2020.
  8. J. Delon, A. Desolneux, L. Facq, and A. Leclaire, “Optimal transport between gmm for multiscale texture synthesis,” in International Conference on Scale Space and Variational Methods in Computer Vision.   Springer, 2023, pp. 627–638.
  9. J. Rabin, G. Peyré, J. Delon, and M. Bernot, “Wasserstein barycenter and its application to texture mixing,” in Third International Conference on Scale Space and Variational Methods in Computer Vision.   Springer, 2012, pp. 435–446.
  10. Y. Balaji, R. Chellappa, and S. Feizi, “Robust optimal transport with applications in generative modeling and domain adaptation,” Advances in Neural Information Processing Systems, vol. 33, pp. 12 934–12 944, 2020.
  11. R. Flamary, N. Courty, D. Tuia, and A. Rakotomamonjy, “Optimal transport for domain adaptation,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 1, no. 1-40, p. 2, 2016.
  12. E. F. Montesuma, F. N. Mboula, and A. Souloumiac, “Recent advances in optimal transport for machine learning,” arXiv preprint arXiv:2306.16156, 2023.
  13. I. Redko, N. Courty, R. Flamary, and D. Tuia, “Optimal transport for multi-source domain adaptation under target shift,” in The 22nd International Conference on Artificial Intelligence and Statistics, 2019, pp. 849–858.
  14. A. Baheri, “Risk-aware reinforcement learning through optimal transport theory,” arXiv preprint arXiv:2309.06239, 2023.
  15. S. Chakraborty, A. S. Bedi, A. Koppel, D. Manocha, H. Wang, F. Huang, and M. Wang, “Aligning agent policy with externalities: Reward design via bilevel RL,” arXiv preprint arXiv:2308.02585, 2023.
  16. J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to communicate with deep multi-agent reinforcement learning,” Advances in Neural Information Processing Systems, vol. 29, 2016.
  17. Y. Hong, Y. Jin, and Y. Tang, “Rethinking individual global max in cooperative multi-agent reinforcement learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 32 438–32 449, 2022.
  18. T. Ikeda and T. Shibuya, “Centralized training with decentralized execution reinforcement learning for cooperative multi-agent systems with communication delay,” in 61st Annual Conference of the Society of Instrument and Control Engineers (SICE), 2022, pp. 135–140.
  19. L. M. Schmidt, J. Brosig, A. Plinge, B. M. Eskofier, and C. Mutschler, “An introduction to multi-agent reinforcement learning and review of its application to autonomous mobility,” in IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 1342–1349.
  20. H. Talebiyan and L. Dueñas-Osorio, “Auctions for resource allocation and decentralized restoration of interdependent networks,” Reliability Engineering & System Safety, vol. 237, p. 109301, 2023.
  21. M. Braquet and E. Bakolas, “Greedy decentralized auction-based task allocation for multi-agent systems,” IFAC-PapersOnLine, vol. 54, no. 20, pp. 675–680, 2021.
  22. F. Li, Z. Xu, and H. Li, “A multi-agent based cooperative approach to decentralized multi-project scheduling and resource allocation,” Computers & Industrial Engineering, vol. 151, p. 106961, 2021.
  23. C. Lu, Q. Bao, S. Xia, and C. Qu, “Centralized reinforcement learning for multi-agent cooperative environments,” Evolutionary Intelligence, pp. 1–7, 2022.
  24. R. Bokade, X. Jin, and C. Amato, “Multi-agent reinforcement learning based on representational communication for large-scale traffic signal control,” IEEE Access, vol. 11, pp. 47 646–47 658, 2023.
  25. J. Gielis, A. Shankar, and A. Prorok, “A critical review of communications in multi-robot systems,” Current Robotics Reports, vol. 3, no. 4, pp. 213–225, 2022.
  26. P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Is multiagent deep reinforcement learning the answer or the question? a brief survey,” Learning, vol. 21, p. 22, 2018.
  27. R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  28. H. Kao, C.-Y. Wei, and V. Subramanian, “Decentralized cooperative reinforcement learning with hierarchical information structure,” in International Conference on Algorithmic Learning Theory, 2022, pp. 573–605.
  29. Y. Li, X. Wang, J. Wang, W. Wang, X. Luo, and S. Xie, “Cooperative multi-agent reinforcement learning with hierarchical relation graph under partial observability,” in IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020, pp. 1–8.
  30. Y. Du, C. Ma, Y. Liu, R. Lin, H. Dong, J. Wang, and Y. Yang, “Scalable model-based policy optimization for decentralized networked systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 9019–9026.
  31. H. Gu, X. Guo, X. Wei, and R. Xu, “Mean-field multi-agent reinforcement learning: A decentralized network approach,” Decision-Making in Operations Research eJournal, 2021.
  32. Y. Mai, Y. Zang, Q. Yin, W. Ni, and K. Huang, “Deep multi-task multi-agent reinforcement learning with knowledge transfer,” IEEE Transactions on Games, 2023.
  33. T. Wang, X. Peng, Y. Jin, and D. Xu, “Experience sharing based memetic transfer learning for multiagent reinforcement learning,” Memetic Computing, vol. 14, no. 1, pp. 3–17, 2022.
  34. H. Shi, J. Li, J. Mao, and K.-S. Hwang, “Lateral transfer learning for multiagent reinforcement learning,” IEEE Transactions on Cybernetics, vol. 53, no. 3, pp. 1699–1711, 2023.
  35. W. Liang, J. Wang, W. Bao, X. Zhu, Q. Wang, and B. Han, “Continuous self-adaptive optimization to learn multi-task multi-agent,” Complex & Intelligent Systems, vol. 8, no. 2, pp. 1355–1367, 2022.
  36. L. Luan, Y. Tian, W. Fang, C. Zhang, W. Xue, R. Chen, and C. Sang, “MARL for traffic signal control in scenarios with different intersection importance,” in Third International Conference on Distributed Artificial Intelligence.   Springer, 2022, pp. 93–106.
  37. T. Wang, T. Liang, J. Li, W. Zhang, Y. Zhang, and Y. Lin, “Adaptive traffic signal control using distributed marl and federated learning,” in IEEE International Conference on Communication Technology (ICCT), 2020, pp. 1242–1248.
  38. C. Gavriluta, C. Boudinet, F. Kupzog, A. Gomez-Exposito, and R. Caire, “Cyber-physical framework for emulating distributed control systems in smart grids,” International Journal of Electrical Power & Energy Systems, vol. 114, p. 105375, 2020.
  39. O. P. Mahela, M. Khosravy, N. Gupta, B. Khan, H. H. Alhelou, R. Mahla, N. Patel, and P. Siano, “Comprehensive overview of multi-agent systems for controlling smart grids,” CSEE Journal of Power and Energy Systems, vol. 8, no. 1, pp. 115–131, 2020.
  40. F. Charbonnier, T. Morstyn, and M. D. McCulloch, “Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility,” Applied Energy, vol. 314, p. 118825, 2022.
  41. X. Ye, Z. Deng, Y. Shi, and W. Shen, “Toward energy-efficient routing of multiple agvs with multi-agent reinforcement learning,” Sensors, vol. 23, no. 12, p. 5615, 2023.
  42. M. Sahraoui, A. Bilami, and A. Taleb-Ahmed, “Schedule-based cooperative multi-agent reinforcement learning for multi-channel communication in wireless sensor networks,” Wireless Personal Communications, vol. 122, no. 4, pp. 3445–3465, 2022.
  43. Y. Liang, H. Wu, and H. Wang, “Asynchronous multi-agent reinforcement learning for collaborative partial charging in wireless rechargeable sensor networks,” IEEE Transactions on Mobile Computing, pp. 1–13, 2023.
  44. W. Yang, C. Lin, H. Dai, P. Wang, J. Ren, L. Wang, G. Wu, and Q. Zhang, “Robust wireless rechargeable sensor networks,” IEEE/ACM Transactions on Networking, vol. 31, no. 3, pp. 949–964, 2023.
  45. Y. Qi, P. Cheng, J. Bai, J. Chen, A. Guenard, Y.-Q. Song, and Z. Shi, “Energy-efficient target tracking by mobile sensors with limited sensing range,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6949–6961, 2016.
  46. S. Su, X. Wang, T. Tang, G. Wang, and Y. Cao, “Energy-efficient operation by cooperative control among trains: A multi-agent reinforcement learning approach,” Control Engineering Practice, vol. 116, p. 104901, 2021.
  47. Y. Xiao, Y. Song, and J. Liu, “Collaborative multi-agent deep reinforcement learning for energy-efficient resource allocation in heterogeneous mobile edge computing networks,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  48. M. Hua, Q. Zhou, C. Zhang, H. Xu, and W. Liu, “Multi-agent deep reinforcement learning for charge-sustaining control of multi-mode hybrid vehicles,” arXiv preprint arXiv:2209.02633, 2022.
  49. Y. Zhang, Q. Yang, D. An, D. Li, and Z. Wu, “Multistep multiagent reinforcement learning for optimal energy schedule strategy of charging stations in smart grid,” IEEE Transactions on Cybernetics, vol. 53, no. 7, pp. 4292–4305, 2023.
  50. T. Li, K. Zhu, N. C. Luong, D. Niyato, Q. Wu, Y. Zhang, and B. Chen, “Applications of multi-agent reinforcement learning in future internet: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1240–1279, 2022.
  51. J. Fan, I. Haasler, J. Karlsson, and Y. Chen, “On the complexity of the optimal transport problem with graph-structured cost,” in International Conference on Artificial Intelligence and Statistics, 2022, pp. 9147–9165.
  52. C. Clason, D. A. Lorenz, H. Mahler, and B. Wirth, “Entropic regularization of continuous optimal transport problems,” Journal of Mathematical Analysis and Applications, vol. 494, no. 1, p. 124432, 2021.
  53. J. Lee, M. Dabagia, E. Dyer, and C. Rozell, “Hierarchical optimal transport for multimodal distribution alignment,” Advances in Neural Information Processing Systems, vol. 32, 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.