What can abelian gauge theories teach us about kinematic algebras? (2401.10750v1)
Abstract: The phenomenon of BCJ duality implies that gauge theories possess an abstract kinematic algebra, mirroring the non-abelian Lie algebra underlying the colour information. Although the nature of the kinematic algebra is known in certain cases, a full understanding is missing for arbitrary non-abelian gauge theories, such that one typically works outwards from well-known examples. In this paper, we pursue an orthogonal approach, and argue that simpler abelian gauge theories can be used as a testing ground for clarifying our understanding of kinematic algebras. We first describe how classes of abelian gauge fields are associated with well-defined subgroups of the diffeomorphism algebra. By considering certain special subgroups, we show that one may construct interacting theories, whose kinematic algebras are inherited from those already appearing in a related abelian theory. Known properties of (anti-)self-dual Yang-Mills theory arise in this way, but so do new generalisations, including self-dual electromagnetism coupled to scalar matter. Furthermore, a recently obtained non-abelian generalisation of the Navier-Stokes equation fits into a similar scheme, as does Chern-Simons theory. Our results provide useful input to further conceptual studies of kinematic algebras.
- Z. Bern, J. Carrasco, and H. Johansson, “New Relations for Gauge-Theory Amplitudes,” Phys.Rev. D78 (2008) 085011, 0805.3993.
- Z. Bern, J. J. M. Carrasco, and H. Johansson, “Perturbative Quantum Gravity as a Double Copy of Gauge Theory,” Phys.Rev.Lett. 105 (2010) 061602, 1004.0476.
- Z. Bern, T. Dennen, Y.-t. Huang, and M. Kiermaier, “Gravity as the Square of Gauge Theory,” Phys.Rev. D82 (2010) 065003, 1004.0693.
- H. Kawai, D. Lewellen, and S. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl.Phys. B269 (1986) 1.
- R. Monteiro, D. O’Connell, and C. D. White, “Black holes and the double copy,” JHEP 1412 (2014) 056, 1410.0239.
- A. Luna, R. Monteiro, D. O’Connell, and C. D. White, “The classical double copy for Taub-NUT spacetime,” Phys. Lett. B750 (2015) 272–277, 1507.01869.
- A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, and C. D. White, “The double copy: Bremsstrahlung and accelerating black holes,” 1603.05737.
- A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg, and C. D. White, “Perturbative spacetimes from Yang-Mills theory,” JHEP 04 (2017) 069, 1611.07508.
- A. Luna, I. Nicholson, D. O’Connell, and C. D. White, “Inelastic Black Hole Scattering from Charged Scalar Amplitudes,” JHEP 03 (2018) 044, 1711.03901.
- N. Bahjat-Abbas, A. Luna, and C. D. White, “The Kerr-Schild double copy in curved spacetime,” JHEP 12 (2017) 004, 1710.01953.
- A. Luna, R. Monteiro, I. Nicholson, and D. O’Connell, “Type D Spacetimes and the Weyl Double Copy,” Class. Quant. Grav. 36 (2019) 065003, 1810.08183.
- W. D. Goldberger and A. K. Ridgway, “Radiation and the classical double copy for color charges,” Phys. Rev. D95 (2017), no. 12, 125010, 1611.03493.
- W. D. Goldberger, S. G. Prabhu, and J. O. Thompson, “Classical gluon and graviton radiation from the bi-adjoint scalar double copy,” Phys. Rev. D96 (2017), no. 6, 065009, 1705.09263.
- W. D. Goldberger, J. Li, and S. G. Prabhu, “Spinning particles, axion radiation, and the classical double copy,” Phys. Rev. D97 (2018), no. 10, 105018, 1712.09250.
- Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, “Chapter 2: An invitation to color-kinematics duality and the double copy,” J. Phys. A 55 (2022), no. 44, 443003, 2203.13013.
- T. Adamo, J. J. M. Carrasco, M. Carrillo-González, M. Chiodaroli, H. Elvang, H. Johansson, D. O’Connell, R. Roiban, and O. Schlotterer, “Snowmass White Paper: the Double Copy and its Applications,” in 2022 Snowmass Summer Study. 4, 2022. 2204.06547.
- D. A. Kosower, R. Monteiro, and D. O’Connell, “The SAGEX review on scattering amplitudes Chapter 14: Classical gravity from scattering amplitudes,” J. Phys. A 55 (2022), no. 44, 443015, 2203.13025.
- A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon, and M. Zeng, “Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in Snowmass 2021. 4, 2022. 2204.05194.
- R. Monteiro and D. O’Connell, “The Kinematic Algebra From the Self-Dual Sector,” JHEP 1107 (2011) 007, 1105.2565.
- A. Parkes, “A Cubic action for selfdual Yang-Mills,” Phys.Lett. B286 (1992) 265–270, hep-th/9203074.
- J. Plebański, “Some solutions of complex Einstein equations,” J. Math. Phys. 16 (1975) 2395–2402.
- N. Bjerrum-Bohr, P. H. Damgaard, R. Monteiro, and D. O’Connell, “Algebras for Amplitudes,” JHEP 1206 (2012) 061, 1203.0944.
- E. Chacón, H. García-Compeán, A. Luna, R. Monteiro, and C. D. White, “New heavenly double copies,” JHEP 03 (2021) 247, 2008.09603.
- A. Lipstein and S. Nagy, “Self-Dual Gravity and Color-Kinematics Duality in AdS4,” Phys. Rev. Lett. 131 (2023), no. 8, 081501, 2304.07141.
- M. Ben-Shahar and H. Johansson, “Off-shell color-kinematics duality for Chern-Simons,” JHEP 08 (2022) 035, 2112.11452.
- S. Axelrod and I. M. Singer, “Chern-Simons perturbation theory,” in International Conference on Differential Geometric Methods in Theoretical Physics, pp. 3–45. 1991. hep-th/9110056.
- S. Axelrod and I. M. Singer, “Chern-Simons perturbation theory. II,” J. Diff. Geom. 39 (1994), no. 1, 173–213, hep-th/9304087.
- A. Edison, J. Mangan, and N. H. Pavao, “Revealing the Landscape of Globally Color-Dual Multi-loop Integrands,” 2309.16558.
- M. Reiterer, “A homotopy BV algebra for Yang-Mills and color-kinematics,” 1912.03110.
- L. Borsten, B. Jurco, H. Kim, T. Macrelli, C. Saemann, and M. Wolf, “Becchi-Rouet-Stora-Tyutin-Lagrangian Double Copy of Yang-Mills Theory,” Phys. Rev. Lett. 126 (2021), no. 19, 191601, 2007.13803.
- L. Borsten, H. Kim, B. Jurco, T. Macrelli, C. Saemann, and M. Wolf, “Double Copy from Homotopy Algebras,” Fortsch. Phys. 69 (2021), no. 8-9, 2100075, 2102.11390.
- L. Borsten, H. Kim, B. Jurco, T. Macrelli, C. Saemann, and M. Wolf, “Tree-level color–kinematics duality implies loop-level color–kinematics duality up to counterterms,” Nucl. Phys. B 989 (2023) 116144, 2108.03030.
- L. Borsten, H. Kim, B. Jurco, T. Macrelli, C. Saemann, and M. Wolf, “Colour-kinematics duality, double copy, and homotopy algebras,” PoS ICHEP2022 (11, 2022) 426, 2211.16405.
- L. Borsten, B. Jurco, H. Kim, T. Macrelli, C. Saemann, and M. Wolf, “Kinematic Lie Algebras From Twistor Spaces,” 2211.13261.
- L. Borsten, B. Jurco, H. Kim, T. Macrelli, C. Saemann, and M. Wolf, “Double Copy from Tensor Products of Metric BV■■{}^{\color[rgb]{.5,.5,.5}\blacksquare}start_FLOATSUPERSCRIPT ■ end_FLOATSUPERSCRIPT-algebras,” 2307.02563.
- F. Diaz-Jaramillo, O. Hohm, and J. Plefka, “Double field theory as the double copy of Yang-Mills theory,” Phys. Rev. D 105 (2022), no. 4, 045012, 2109.01153.
- R. Bonezzi, F. Diaz-Jaramillo, and O. Hohm, “The gauge structure of double field theory follows from Yang-Mills theory,” Phys. Rev. D 106 (2022), no. 2, 026004, 2203.07397.
- R. Bonezzi, C. Chiaffrino, F. Diaz-Jaramillo, and O. Hohm, “Gauge invariant double copy of Yang-Mills theory: The quartic theory,” Phys. Rev. D 107 (2023), no. 12, 126015, 2212.04513.
- R. Bonezzi, C. Chiaffrino, F. Diaz-Jaramillo, and O. Hohm, “Gravity = Yang-Mills,” 6, 2023. 2306.14788.
- I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra and Quantization,” Phys. Lett. B 102 (1981) 27–31.
- I. A. Batalin and G. A. Vilkovisky, “Quantization of Gauge Theories with Linearly Dependent Generators,” Phys. Rev. D 28 (1983) 2567–2582. [Erratum: Phys.Rev.D 30, 508 (1984)].
- R. Bonezzi, F. Diaz-Jaramillo, and S. Nagy, “Gauge Independent Kinematic Algebra of Self-Dual Yang-Mills,” 2306.08558.
- S. Mizera, “Kinematic Jacobi Identity is a Residue Theorem: Geometry of Color-Kinematics Duality for Gauge and Gravity Amplitudes,” Phys. Rev. Lett. 124 (2020), no. 14, 141601, 1912.03397.
- C.-H. Fu and K. Krasnov, “Colour-Kinematics duality and the Drinfeld double of the Lie algebra of diffeomorphisms,” JHEP 01 (2017) 075, 1603.02033.
- G. Chen, H. Johansson, F. Teng, and T. Wang, “On the kinematic algebra for BCJ numerators beyond the MHV sector,” JHEP 11 (2019) 055, 1906.10683.
- G. Chen, G. Lin, and C. Wen, “Kinematic Hopf algebra for amplitudes and form factors,” Phys. Rev. D 107 (2023), no. 8, L081701, 2208.05519.
- A. Brandhuber, G. Chen, H. Johansson, G. Travaglini, and C. Wen, “Kinematic Hopf Algebra for Bern-Carrasco-Johansson Numerators in Heavy-Mass Effective Field Theory and Yang-Mills Theory,” Phys. Rev. Lett. 128 (2022), no. 12, 121601, 2111.15649.
- A. Brandhuber, G. R. Brown, G. Chen, J. Gowdy, G. Travaglini, and C. Wen, “Amplitudes, Hopf algebras and the colour-kinematics duality,” JHEP 12 (2022) 101, 2208.05886.
- C. R. Mafra and O. Schlotterer, “Multiparticle SYM equations of motion and pure spinor BRST blocks,” JHEP 07 (2014) 153, 1404.4986.
- C. R. Mafra and O. Schlotterer, “Berends-Giele recursions and the BCJ duality in superspace and components,” JHEP 03 (2016) 097, 1510.08846.
- K. Armstrong-Williams, C. D. White, and S. Wikeley, “Non-perturbative aspects of the self-dual double copy,” JHEP 08 (2022) 160, 2205.02136.
- C. Cheung and J. Mangan, “Scattering Amplitudes and the Navier-Stokes Equation,” 2010.15970.
- D. S. Berman, E. Chacón, A. Luna, and C. D. White, “The self-dual classical double copy, and the Eguchi-Hanson instanton,” 1809.04063.
- 2003.
- M. Campiglia and S. Nagy, “A double copy for asymptotic symmetries in the self-dual sector,” 2102.01680.
- S. Nagy and J. Peraza, “Radiative phase space extensions at all orders in r for self-dual Yang-Mills and gravity,” JHEP 02 (2023) 202, 2211.12991.
- Q. Liang and S. Nagy, “Convolutional double copy in (Anti) de Sitter space,” 2311.14319.
- R. Monteiro, R. Stark-Muchão, and S. Wikeley, “Anomaly and double copy in quantum self-dual Yang-Mills and gravity,” JHEP 09 (2023) 030, 2211.12407.
- G. Chalmers and W. Siegel, “The Selfdual sector of QCD amplitudes,” Phys. Rev. D 54 (1996) 7628–7633, hep-th/9606061.
- G. Chalmers and W. Siegel, “Simplifying algebra in Feynman graphs. Part 2. Spinor helicity from the space-cone,” Phys. Rev. D 59 (1999) 045013, hep-ph/9801220.
- 1995.
- M. M. Sheikh-Jabbari, V. Taghiloo, and M. H. Vahidinia, “Shallow Water Memory: Stokes and Darwin Drifts,” SciPost Phys. 15 (2023) 115, 2302.04912.
- D. Tong, “A gauge theory for shallow water,” SciPost Phys. 14 (2023), no. 5, 102, 2209.10574.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.