Low-loss, compact, fibre-integrated cell for quantum memories (2401.10651v1)
Abstract: We present a low-loss, compact, hollow core optical fibre (HCF) cell integrated with single mode fibre (SMF). The cell is designed to be filled with atomic vapour and used as a component in photonic quantum technologies, with applications in quantum memory and optical switching. We achieve a total insertion loss of 0.6(2) dB at 780 nm wavelength via graded index fibre to ensure efficient mode matching coupled with anti-reflection coatings to minimise loss at the SMF-HCF interfaces. We also present numerical modelling of these interfaces, which can be undertaken efficiently without the need for finite element simulation. We encapsulate the HCF core by coupling to the SMF inside a support capillary, enhancing durability and facilitating seamless integration into existing fibre platforms.
- “Quantum cryptography” In Rev. Mod. Phys. 74 American Physical Society, 2002, pp. 145–195 DOI: 10.1103/RevModPhys.74.145
- Charles H. Bennett and David P. DiVincenzo “Quantum information and computation” In Nature 404.6775, 2000, pp. 247–255 DOI: 10.1038/35005001
- C.L. Degen, F. Reinhard and P. Cappellaro “Quantum sensing” In Rev. Mod. Phys. 89 American Physical Society, 2017, pp. 035002 DOI: 10.1103/RevModPhys.89.035002
- Jeremy L. O’Brien “Optical Quantum Computing” In Science 318.5856, 2007, pp. 1567–1570 DOI: 10.1126/science.1142892
- “Quantum communication” In Nature Photonics 1.3, 2007, pp. 165–171 DOI: 10.1038/nphoton.2007.22
- H.J. Kimble “The quantum internet” In Nature 453.7198, 2008, pp. 1023–1030 DOI: 10.1038/nature07127
- Robert J.A. Francis-Jones, Rowan A. Hoggarth and Peter J. Mosley “All-fiber multiplexed source of high-purity single photons” In Optica 3.11 Optica Publishing Group, 2016, pp. 1270–1273 DOI: 10.1364/OPTICA.3.001270
- “Synchronization of optical photons for quantum information processing” In Science Advances 2.5, 2016 DOI: 10.1126/sciadv.1501772
- “Fast, noise-free memory for photon synchronization at room temperature” In Science Advances 4.1, 2018, pp. eaap8598 DOI: 10.1126/sciadv.aap8598
- “Deterministic Storage and Retrieval of Telecom Quantum Dot Photons Interfaced with an Atomic Quantum Memory”, 2023 arXiv: https://arxiv.org/abs/2303.04166
- “Fast, low-loss all-optical phase modulation in warm rubidium vapour”, 2023 arXiv: https://arxiv.org/abs/2309.04313
- Roberto Mottola, Gianni Buser and Philipp Treutlein “Optical Memory in a Microfabricated Rubidium Vapor Cell” In Phys. Rev. Lett. 131 American Physical Society, 2023, pp. 260801 DOI: 10.1103/PhysRevLett.131.260801
- “Broadband single-photon-level memory in a hollow-core photonic crystal fibre” In Nature Photonics 8.4, 2014, pp. 287–291 DOI: 10.1038/nphoton.2014.45
- “Generation of cold Rydberg atoms at submicron distances from an optical nanofiber” In Phys. Rev. Res. 2 American Physical Society, 2020, pp. 012038 DOI: 10.1103/PhysRevResearch.2.012038
- “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber” In Phys. Rev. Lett. 114 American Physical Society, 2015, pp. 180503 DOI: 10.1103/PhysRevLett.114.180503
- “Optical Interface Created by Laser-Cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber” In Phys. Rev. Lett. 104 American Physical Society, 2010, pp. 203603 DOI: 10.1103/PhysRevLett.104.203603
- “Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 093603 DOI: 10.1103/PhysRevLett.115.093603
- “Fiber-Optical Switch Controlled by a Single Atom” In Phys. Rev. Lett. 111 American Physical Society, 2013, pp. 193601 DOI: 10.1103/PhysRevLett.111.193601
- “Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator” In Phys. Rev. Lett. 126 American Physical Society, 2021, pp. 233602 DOI: 10.1103/PhysRevLett.126.233602
- “Coupling a Single Trapped Atom to a Nanoscale Optical Cavity” In Science 340.6137, 2013, pp. 1202–1205 DOI: 10.1126/science.1237125
- “Nanophotonic quantum phase switch with a single atom” In Nature 508.7495, 2014, pp. 241–244 DOI: 10.1038/nature13188
- “Spatially resolved spectroscopy of alkali metal vapour diffusing inside hollow-core photonic crystal fibres” In New Journal of Physics 24.11 IOP Publishing, 2022, pp. 113017 DOI: 10.1088/1367-2630/ac9db6
- “Laser-cooled atoms inside a hollow-core photonic-crystal fiber” In Phys. Rev. A 83 American Physical Society, 2011, pp. 063830 DOI: 10.1103/PhysRevA.83.063830
- Thorsten Peters, Leonid P. Yatsenko and Thomas Halfmann “Loading and spatially resolved characterization of a cold atomic ensemble inside a hollow-core fiber” In Phys. Rev. A 103 American Physical Society, 2021, pp. 063302 DOI: 10.1103/PhysRevA.103.063302
- “An atom interferometer inside a hollow-core photonic crystal fiber” In Science Advances 4.1, 2018, pp. e1701723 DOI: 10.1126/sciadv.1701723
- “Switching and Counting With Atomic Vapors in Photonic-Crystal Fibers” In IEEE Journal of Selected Topics in Quantum Electronics 18.6, 2012, pp. 1747–1753 DOI: 10.1109/JSTQE.2012.2196414
- “Rydberg atoms in hollow-core photonic crystal fibres” In Nature Communications 5.1, 2014, pp. 4132 DOI: 10.1038/ncomms5132
- “Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator” In Journal of Applied Physics 133.1, 2023, pp. 014401 DOI: 10.1063/5.0129107
- “RF-dressed Rydberg atoms in hollow-core fibres” In Journal of Physics B: Atomic, Molecular and Optical Physics 49.13 IOP Publishing, 2016, pp. 134005 DOI: 10.1088/0953-4075/49/13/134005
- “High photon-loss threshold quantum computing using GHZ-state measurements”, 2023 arXiv: https://arxiv.org/abs/2308.04192
- Fei Yu and Jonathan C. Knight “Negative Curvature Hollow-Core Optical Fiber” In IEEE Journal of Selected Topics in Quantum Electronics 22.2 IEEE, 2016, pp. 146–155 DOI: 10.1109/JSTQE.2015.2473140
- “Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection” In IEEE Photonics Technology Letters 31.10, 2019, pp. 723–726 DOI: 10.1109/LPT.2019.2902635
- “All-fiber hollow-core fiber gas cell” In Optical Fiber Technology 81, 2023, pp. 103513 DOI: https://doi.org/10.1016/j.yofte.2023.103513
- “A Single-Photon-compatible Telecom-C-Band Quantum Memory in a Hot Atomic Gas” arXiv, 2022 DOI: 10.48550/ARXIV.2211.04415
- K Kaczmarek “ORCA - towards an integrated noise-free quantum memory”, 2017
- Peng Song, Kah Yung Phoong and David Bird “Quantitative analysis of anti-resonance in single-ring, hollow-core fibres” In Opt. Express 27.20 Optica Publishing Group, 2019, pp. 27745–27760 DOI: 10.1364/OE.27.027745
- “Analysis and evaluation of graded-index fiber lenses” In Journal of Lightwave Technology 5.9, 1987, pp. 1156–1164 DOI: 10.1109/JLT.1987.1075651
- “Supplementary Material: GIF Lensing Demo” Available at: https://github.com/BathPhotons/SMF-GIF-HCF URL: https://github.com/BathPhotons/SMF-GIF-HCF
- ThorLabs “Datasheet 6829-S01, Rev F”, 2017
- ThorLabs “Datasheet 1993-S01, Rev E”, 2021
- “Optical Waveguide Theory” Springer US, 1983
- Leah R. Murphy and David Bird “Azimuthal confinement: the missing ingredient in understanding confinement loss in antiresonant, hollow-core fibers” In Optica 10.7 Optica Publishing Group, 2023, pp. 854–870 DOI: 10.1364/OPTICA.492058
- “Limits of Coupling Efficiency Into Hollow-Core Antiresonant Fibres” In Journal of Lightwave Technology 41.19, 2023, pp. 6374–6382 DOI: 10.1109/JLT.2023.3279701
- “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers” In Opt. Express 16.10 Optica Publishing Group, 2008, pp. 7233–7243 DOI: 10.1364/OE.16.007233
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.