Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Low-loss, compact, fibre-integrated cell for quantum memories (2401.10651v1)

Published 19 Jan 2024 in quant-ph and physics.optics

Abstract: We present a low-loss, compact, hollow core optical fibre (HCF) cell integrated with single mode fibre (SMF). The cell is designed to be filled with atomic vapour and used as a component in photonic quantum technologies, with applications in quantum memory and optical switching. We achieve a total insertion loss of 0.6(2) dB at 780 nm wavelength via graded index fibre to ensure efficient mode matching coupled with anti-reflection coatings to minimise loss at the SMF-HCF interfaces. We also present numerical modelling of these interfaces, which can be undertaken efficiently without the need for finite element simulation. We encapsulate the HCF core by coupling to the SMF inside a support capillary, enhancing durability and facilitating seamless integration into existing fibre platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. “Quantum cryptography” In Rev. Mod. Phys. 74 American Physical Society, 2002, pp. 145–195 DOI: 10.1103/RevModPhys.74.145
  2. Charles H. Bennett and David P. DiVincenzo “Quantum information and computation” In Nature 404.6775, 2000, pp. 247–255 DOI: 10.1038/35005001
  3. C.L. Degen, F. Reinhard and P. Cappellaro “Quantum sensing” In Rev. Mod. Phys. 89 American Physical Society, 2017, pp. 035002 DOI: 10.1103/RevModPhys.89.035002
  4. Jeremy L. O’Brien “Optical Quantum Computing” In Science 318.5856, 2007, pp. 1567–1570 DOI: 10.1126/science.1142892
  5. “Quantum communication” In Nature Photonics 1.3, 2007, pp. 165–171 DOI: 10.1038/nphoton.2007.22
  6. H.J. Kimble “The quantum internet” In Nature 453.7198, 2008, pp. 1023–1030 DOI: 10.1038/nature07127
  7. Robert J.A. Francis-Jones, Rowan A. Hoggarth and Peter J. Mosley “All-fiber multiplexed source of high-purity single photons” In Optica 3.11 Optica Publishing Group, 2016, pp. 1270–1273 DOI: 10.1364/OPTICA.3.001270
  8. “Synchronization of optical photons for quantum information processing” In Science Advances 2.5, 2016 DOI: 10.1126/sciadv.1501772
  9. “Fast, noise-free memory for photon synchronization at room temperature” In Science Advances 4.1, 2018, pp. eaap8598 DOI: 10.1126/sciadv.aap8598
  10. “Deterministic Storage and Retrieval of Telecom Quantum Dot Photons Interfaced with an Atomic Quantum Memory”, 2023 arXiv: https://arxiv.org/abs/2303.04166
  11. “Fast, low-loss all-optical phase modulation in warm rubidium vapour”, 2023 arXiv: https://arxiv.org/abs/2309.04313
  12. Roberto Mottola, Gianni Buser and Philipp Treutlein “Optical Memory in a Microfabricated Rubidium Vapor Cell” In Phys. Rev. Lett. 131 American Physical Society, 2023, pp. 260801 DOI: 10.1103/PhysRevLett.131.260801
  13. “Broadband single-photon-level memory in a hollow-core photonic crystal fibre” In Nature Photonics 8.4, 2014, pp. 287–291 DOI: 10.1038/nphoton.2014.45
  14. “Generation of cold Rydberg atoms at submicron distances from an optical nanofiber” In Phys. Rev. Res. 2 American Physical Society, 2020, pp. 012038 DOI: 10.1103/PhysRevResearch.2.012038
  15. “Demonstration of a Memory for Tightly Guided Light in an Optical Nanofiber” In Phys. Rev. Lett. 114 American Physical Society, 2015, pp. 180503 DOI: 10.1103/PhysRevLett.114.180503
  16. “Optical Interface Created by Laser-Cooled Atoms Trapped in the Evanescent Field Surrounding an Optical Nanofiber” In Phys. Rev. Lett. 104 American Physical Society, 2010, pp. 203603 DOI: 10.1103/PhysRevLett.104.203603
  17. “Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 093603 DOI: 10.1103/PhysRevLett.115.093603
  18. “Fiber-Optical Switch Controlled by a Single Atom” In Phys. Rev. Lett. 111 American Physical Society, 2013, pp. 193601 DOI: 10.1103/PhysRevLett.111.193601
  19. “Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator” In Phys. Rev. Lett. 126 American Physical Society, 2021, pp. 233602 DOI: 10.1103/PhysRevLett.126.233602
  20. “Coupling a Single Trapped Atom to a Nanoscale Optical Cavity” In Science 340.6137, 2013, pp. 1202–1205 DOI: 10.1126/science.1237125
  21. “Nanophotonic quantum phase switch with a single atom” In Nature 508.7495, 2014, pp. 241–244 DOI: 10.1038/nature13188
  22. “Spatially resolved spectroscopy of alkali metal vapour diffusing inside hollow-core photonic crystal fibres” In New Journal of Physics 24.11 IOP Publishing, 2022, pp. 113017 DOI: 10.1088/1367-2630/ac9db6
  23. “Laser-cooled atoms inside a hollow-core photonic-crystal fiber” In Phys. Rev. A 83 American Physical Society, 2011, pp. 063830 DOI: 10.1103/PhysRevA.83.063830
  24. Thorsten Peters, Leonid P. Yatsenko and Thomas Halfmann “Loading and spatially resolved characterization of a cold atomic ensemble inside a hollow-core fiber” In Phys. Rev. A 103 American Physical Society, 2021, pp. 063302 DOI: 10.1103/PhysRevA.103.063302
  25. “An atom interferometer inside a hollow-core photonic crystal fiber” In Science Advances 4.1, 2018, pp. e1701723 DOI: 10.1126/sciadv.1701723
  26. “Switching and Counting With Atomic Vapors in Photonic-Crystal Fibers” In IEEE Journal of Selected Topics in Quantum Electronics 18.6, 2012, pp. 1747–1753 DOI: 10.1109/JSTQE.2012.2196414
  27. “Rydberg atoms in hollow-core photonic crystal fibres” In Nature Communications 5.1, 2014, pp. 4132 DOI: 10.1038/ncomms5132
  28. “Digitally encoded RF to optical data transfer using excited Rb without the use of a local oscillator” In Journal of Applied Physics 133.1, 2023, pp. 014401 DOI: 10.1063/5.0129107
  29. “RF-dressed Rydberg atoms in hollow-core fibres” In Journal of Physics B: Atomic, Molecular and Optical Physics 49.13 IOP Publishing, 2016, pp. 134005 DOI: 10.1088/0953-4075/49/13/134005
  30. “High photon-loss threshold quantum computing using GHZ-state measurements”, 2023 arXiv: https://arxiv.org/abs/2308.04192
  31. Fei Yu and Jonathan C. Knight “Negative Curvature Hollow-Core Optical Fiber” In IEEE Journal of Selected Topics in Quantum Electronics 22.2 IEEE, 2016, pp. 146–155 DOI: 10.1109/JSTQE.2015.2473140
  32. “Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection” In IEEE Photonics Technology Letters 31.10, 2019, pp. 723–726 DOI: 10.1109/LPT.2019.2902635
  33. “All-fiber hollow-core fiber gas cell” In Optical Fiber Technology 81, 2023, pp. 103513 DOI: https://doi.org/10.1016/j.yofte.2023.103513
  34. “A Single-Photon-compatible Telecom-C-Band Quantum Memory in a Hot Atomic Gas” arXiv, 2022 DOI: 10.48550/ARXIV.2211.04415
  35. K Kaczmarek “ORCA - towards an integrated noise-free quantum memory”, 2017
  36. Peng Song, Kah Yung Phoong and David Bird “Quantitative analysis of anti-resonance in single-ring, hollow-core fibres” In Opt. Express 27.20 Optica Publishing Group, 2019, pp. 27745–27760 DOI: 10.1364/OE.27.027745
  37. “Analysis and evaluation of graded-index fiber lenses” In Journal of Lightwave Technology 5.9, 1987, pp. 1156–1164 DOI: 10.1109/JLT.1987.1075651
  38. “Supplementary Material: GIF Lensing Demo” Available at: https://github.com/BathPhotons/SMF-GIF-HCF URL: https://github.com/BathPhotons/SMF-GIF-HCF
  39. ThorLabs “Datasheet 6829-S01, Rev F”, 2017
  40. ThorLabs “Datasheet 1993-S01, Rev E”, 2021
  41. “Optical Waveguide Theory” Springer US, 1983
  42. Leah R. Murphy and David Bird “Azimuthal confinement: the missing ingredient in understanding confinement loss in antiresonant, hollow-core fibers” In Optica 10.7 Optica Publishing Group, 2023, pp. 854–870 DOI: 10.1364/OPTICA.492058
  43. “Limits of Coupling Efficiency Into Hollow-Core Antiresonant Fibres” In Journal of Lightwave Technology 41.19, 2023, pp. 6374–6382 DOI: 10.1109/JLT.2023.3279701
  44. “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers” In Opt. Express 16.10 Optica Publishing Group, 2008, pp. 7233–7243 DOI: 10.1364/OE.16.007233
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: