Using reservoir computing to construct scarred wavefunctions (2401.10307v1)
Abstract: Scar theory is one of the fundamental pillars in the field of quantum chaos, and scarred functions a superb tool to carry out studies in it. Several methods, usually semiclassical, have been described to cope with these two phenomena. In this paper, we present an alternative method, based on the novel machine learning algorithm known as Reservoir Computing, to calculate such scarred wavefunctions together with the associated eigenstates of the system. The resulting methodology achieves outstanding accuracy while reducing execution times by a factor of ten. As an illustration of the effectiveness of this method, we apply it to the widespread chaotic two-dimensional coupled quartic oscillator.
- M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).
- M. V. Berry, Quantum scars of classical closed orbits in phase space, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 423, 219 (1989).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
- E. J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: Scars of periodic orbits, Phys. Rev. Lett. 53, 1515 (1984).
- L. Kaplan and E. Heller, Linear and nonlinear theory of eigenfunction scars, Ann. Phys. 264, 171 (1998).
- G. G. de Polavieja, F. Borondo, and R. M. Benito, Scars in groups of eigenstates in a classically chaotic system, Phys. Rev. Lett. 73, 1613 (1994).
- E. G. Vergini and G. G. Carlo, Semiclassical construction of resonances with hyperbolic structure: the scar function, J. Phys. A: Mathematical and General 34, 4525 (2001).
- P. D. Bergamasco, G. G. Carlo, and A. M. Rivas, Relevant out-of-time-order correlator operators: Footprints of the classical dynamics, Phys. Rev. E 102, 052133 (2020).
- Q. Hummel, K. Richter, and P. Schlagheck, Genuine many-body quantum scars along unstable modes in Bose-Hubbard systems, Phys. Rev. Lett. 130, 250402 (2023).
- S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9, 1735 (1997).
- L. Domingo, J. Borondo, and F. Borondo, Adapting reservoir computing to solve the schrödinger equation, Chaos 32, 063111 (2022).
- P. Dahlqvist and G. Russberg, Existence of stable orbits in the x2superscript𝑥2{\mathit{x}}^{2}italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPTy2superscript𝑦2{\mathit{y}}^{2}italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT potential, Phys. Rev. Lett. 65, 2837 (1990).
- J. Zuñiga, A. Bastida, and A. Requena, Quatum dynamics of oblique vibrational states in the Hénon-Heiles system, J. Phys. Chem. A 127, 8663 (2023).
- O. Bohigas, S. Tomsovic, and D. Ullmo, Manifestations of classical phase space structures in quantum mechanics, Phys. Rep. 223, 43 (1993).
- F. Revuelta, Estudio de la estructura de autofunciones de sistemas caóticos en una base de funciones de scar, PhD Thesis, Universidad Politécnica de Madrid (2012), available at https://oa.upm.es/10889/.
- D. Kosloff and R. Kosloff, A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics, J. Comput. Phys. 52, 35 (1983).
- J. Lu and X. Yang, Frozen gaussian approximation for high frequency wave propagation, Commun. Math. Sci. 9, 663 (2011).
- V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics (Springer Dordrecht, Dordrecht Holland, 1981).
- H. Jaeger, The ”echo state” approach to analysing and training recurrent neural networks-with an erratum note, German National Research Center for Information Technology GMD Technical Report 148, 09114 (2001).
- J. W. S. Rayleigh and E. Schrödinger, The theory of sound, Nature 119, 553 (1927).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.