Anomalies and gauging of U(1) symmetries (2401.10165v4)
Abstract: We propose the Symmetry TFT for theories with a $U(1)$ symmetry in arbitrary dimension. The Symmetry TFT describes the structure of the symmetry, its anomalies, and the possible topological manipulations. It is constructed as a BF theory of gauge fields for groups $U(1)$ and $\mathbb{R}$, and contains a continuum of topological operators. We also propose an operation that produces the Symmetry TFT for the theory obtained by dynamically gauging the $U(1)$ symmetry. We discuss many examples. As an interesting outcome, we obtain the Symmetry TFT for the non-invertible $\mathbb{Q}/\mathbb{Z}$ chiral symmetry in four dimensions.
- J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37, 95 (1971).
- C. G. Callan, Jr. and J. A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250, 427 (1985).
- D. S. Freed, Anomalies and Invertible Field Theories, Proc. Symp. Pure Math. 88, 25 (2014), arXiv:1404.7224 [hep-th] .
- D. Gaiotto and J. Kulp, Orbifold groupoids, JHEP 02, 132, arXiv:2008.05960 [hep-th] .
- D. S. Freed, G. W. Moore, and C. Teleman, Topological symmetry in quantum field theory, (2022), arXiv:2209.07471 [hep-th] .
- J. Kaidi, K. Ohmori, and Y. Zheng, Symmetry TFTs for Non-Invertible Defects, (2022), arXiv:2209.11062 [hep-th] .
- C. Zhang and C. Córdova, Anomalies of (1+1)11(1{+}1)( 1 + 1 )D categorical symmetries, (2023), arXiv:2304.01262 [cond-mat.str-el] .
- C. Cordova, P.-S. Hsin, and C. Zhang, Anomalies of Non-Invertible Symmetries in (3+1)d, (2023), arXiv:2308.11706 [hep-th] .
- Y. Choi, H. T. Lam, and S.-H. Shao, Noninvertible Global Symmetries in the Standard Model, Phys. Rev. Lett. 129, 161601 (2022a), arXiv:2205.05086 [hep-th] .
- C. Cordova and K. Ohmori, Noninvertible Chiral Symmetry and Exponential Hierarchies, Phys. Rev. X 13, 011034 (2023), arXiv:2205.06243 [hep-th] .
- T. D. Brennan and Z. Sun, A SymTFT for Continuous Symmetries, (2024), arXiv:2401.06128 [hep-th] .
- F. Apruzzi and F. Bedogna, to appear.
- J. M. Maldacena, G. W. Moore, and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10, 005, arXiv:hep-th/0108152 .
- T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83, 084019 (2011), arXiv:1011.5120 [hep-th] .
- A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04, 001, arXiv:1401.0740 [hep-th] .
- The theory might contain other topological operators, for instance condensates [45] or theta-defects [46].
- F. Benini, C. Copetti, and L. Di Pietro, Factorization and global symmetries in holography, SciPost Phys. 14, 019 (2023), arXiv:2203.09537 [hep-th] .
- Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020), arXiv:1712.09542 [hep-th] .
- R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129, 393 (1990).
- N. Seiberg and E. Witten, Gapped boundary phases of topological insulators via weak coupling, PTEP 2016, 12C101 (2016), arXiv:1602.04251 [cond-mat.str-el] .
- R. Thorngren and Y. Wang, Anomalous symmetries end at the boundary, JHEP 09, 017, arXiv:2012.15861 [hep-th] .
- C. Córdova and T. T. Dumitrescu, Candidate Phases for SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) Adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT with Two Flavors from 𝒩=2𝒩2\mathcal{N}{=}2caligraphic_N = 2 Supersymmetric Yang-Mills Theory, (2018), arXiv:1806.09592 [hep-th] .
- C.-T. Hsieh, Discrete gauge anomalies revisited, (2018), arXiv:1808.02881 [hep-th] .
- J. Davighi and N. Lohitsiri, The algebra of anomaly interplay, SciPost Phys. 10, 074 (2021), arXiv:2011.10102 [hep-th] .
- D. Tong, Lectures on the Quantum Hall Effect (2016) arXiv:1606.06687 [hep-th] .
- The boundary theory also inherits the topological surfaces U(0,m)[γ3]subscript𝑈0𝑚delimited-[]subscript𝛾3U_{(0,m)}[\gamma_{3}]italic_U start_POSTSUBSCRIPT ( 0 , italic_m ) end_POSTSUBSCRIPT [ italic_γ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ] which are theta-defects [46] constructed out of the lines Wn[γ1]subscript𝑊𝑛delimited-[]subscript𝛾1W_{n}[\gamma_{1}]italic_W start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT [ italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ].
- A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, (2013), arXiv:1309.4721 [hep-th] .
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-group global symmetries, JHEP 02, 184, arXiv:1802.04790 [hep-th] .
- F. Benini, C. Córdova, and P.-S. Hsin, On 2-Group Global Symmetries and their Anomalies, JHEP 03, 118, arXiv:1803.09336 [hep-th] .
- The minimal mixed U(1)𝑈1U(1)italic_U ( 1 ) Chern-Simons terms that are well defined are 14π2AdBdB14superscript𝜋2𝐴𝑑𝐵𝑑𝐵\frac{1}{4\pi^{2}}A\,dB\,dBdivide start_ARG 1 end_ARG start_ARG 4 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_A italic_d italic_B italic_d italic_B or 18π2(AdBdB+BdAdA)18superscript𝜋2𝐴𝑑𝐵𝑑𝐵𝐵𝑑𝐴𝑑𝐴\frac{1}{8\pi^{2}}(A\,dB\,dB+B\,dA\,dA)divide start_ARG 1 end_ARG start_ARG 8 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_A italic_d italic_B italic_d italic_B + italic_B italic_d italic_A italic_d italic_A ).
- For α=1/2𝛼12\alpha=1/2italic_α = 1 / 2 we can simply use the U(1)1𝑈subscript11U(1)_{1}italic_U ( 1 ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT trivial spin-Chern-Simons theory. Indeed this is the only value that corresponds to an invertible symmetry, namely (−1)Fsuperscript1𝐹(-1)^{F}( - 1 ) start_POSTSUPERSCRIPT italic_F end_POSTSUPERSCRIPT.
- P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d, SciPost Phys. 6, 039 (2019), arXiv:1812.04716 [hep-th] .
- Y. Choi, H. T. Lam, and S.-H. Shao, Non-invertible Gauss Law and Axions, (2022b), arXiv:2212.04499 [hep-th] .
- G. T. Horowitz, Exactly Soluble Diffeomorphism Invariant Theories, Commun. Math. Phys. 125, 417 (1989).
- K. Roumpedakis, S. Seifnashri, and S.-H. Shao, Higher Gauging and Non-invertible Condensation Defects, Commun. Math. Phys. 401, 3043 (2023), arXiv:2204.02407 [hep-th] .
- L. Bhardwaj, S. Schafer-Nameki, and A. Tiwari, Unifying constructions of non-invertible symmetries, SciPost Phys. 15, 122 (2023), arXiv:2212.06159 [hep-th] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.