Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Aspects of regular and singular electromagnetic-generalized-quasitopological-gravities black holes in (2+1) dimensions (2401.10025v2)

Published 18 Jan 2024 in gr-qc and hep-th

Abstract: We investigate quasitopological black holes in $(2+1)$ dimensions in the context of electromagnetic-generalized-quasitopological-gravities (EM-GQT). For three different families of geometries of quasitopological nature, we study the causal structure and their response to a probe scalar field. To linear order, we verify that the scalar field evolves stably, decaying in different towers of quasinormal modes. The studied black holes are either charged geometries (regular and singular) or a regular Ba~nados-Teitelboim-Zanelli (BTZ)-like black hole, both coming from the EM-GQT theory characterized by nonminimal coupling parameters between gravity and a background scalar field. We calculate the quasinormal modes applying different numerical methods with convergent results between them. The oscillations demonstrate a very peculiar structure for charged black holes: in the intermediate and near extremal cases, a particular scaling arises, similar to that of the rotating BTZ geometry, with the modes being proportional to the distance between horizons. For the single horizon black hole solution, we identify the presence of different quasinormal families by analyzing the features of that spectrum. In all three considered geometries, no instabilities were found.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252, 343 (1985).
  2. R. B. Mann, Lower dimensional black holes, Gen. Rel. Grav. 24, 433 (1992).
  3. M. Banados, C. Teitelboim, and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69, 1849 (1992), arXiv:hep-th/9204099 .
  4. A. A. García-Díaz, Exact Solutions in Three-Dimensional Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2017).
  5. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14, 57 (1965).
  6. S. Hawking, The occurrence of singularities in cosmology. III. Causality and singularities, Proc. Roy. Soc. Lond. A 300, 187 (1967).
  7. P. A. Cano and Ángel Murcia, Resolution of reissner-nordström singularities by higher-derivative corrections (2020), arXiv:2006.15149 [hep-th] .
  8. P. A. Cano and A. Murcia, Electromagnetic quasitopological gravities, Journal of High Energy Physics 2020, 10.1007/jhep10(2020)125 (2020).
  9. J. M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proc. Int. Conf. GR5, Tbilisi, Vol. 174 (1968) p. 174.
  10. E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80, 5056 (1998), arXiv:gr-qc/9911046 .
  11. A. B. Balakin, V. V. Bochkarev, and J. P. S. Lemos, Non-minimal coupling for the gravitational and electromagnetic fields: Black hole solutions and solitons, Phys. Rev. D 77, 084013 (2008), arXiv:0712.4066 [gr-qc] .
  12. E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
  13. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  14. B. P. Abbott et al. (LIGO Scientific, Virgo), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016b), arXiv:1606.04855 [gr-qc] .
  15. R. D. B. Fontana, J. de Oliveira, and A. B. Pavan, Dynamical evolution of non-minimally coupled scalar field in spherically symmetric de sitter spacetimes, The European Physical Journal C 79, 10.1140/epjc/s10052-019-6831-3 (2019).
  16. O. P. Fernandez Piedra and J. de Oliveira, Fermion perturbations in string-theory black holes, Class. Quant. Grav. 28, 085023 (2011), arXiv:1009.2064 [gr-qc] .
  17. R. D. B. Fontana and F. C. Mena, Quasinormal modes and stability of accelerating Reissner-Norsdtröm AdS black holes, JHEP 10, 047, arXiv:2203.13933 [gr-qc] .
  18. K. Destounis, R. D. B. Fontana, and F. C. Mena, Stability of the Cauchy horizon in accelerating black-hole spacetimes, Phys. Rev. D 102, 104037 (2020), arXiv:2006.01152 [gr-qc] .
  19. D. Birmingham, I. Sachs, and S. N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Physical Review Letters 88, 10.1103/physrevlett.88.151301 (2002).
  20. G. T. Horowitz and V. E. Hubeny, Quasinormal modes of ads black holes and the approach to thermal equilibrium, Physical Review D 62, 10.1103/physrevd.62.024027 (2000).
  21. K. Lin, J. de Oliveira, and E. Abdalla, Holographic phase transition and Quasinormal modes in Lovelock gravity, Phys. Rev. D 90, 124071 (2014), arXiv:1409.4066 [hep-th] .
  22. J. de Oliveira and R. D. B. Fontana, Three-dimensional black holes with quintessence, Phys. Rev. D 98, 044005 (2018a), arXiv:1804.00210 [gr-qc] .
  23. D. Birmingham, Choptuik scaling and quasinormal modes in the anti-de sitter space/conformal-field theory correspondence, Physical Review D 64, 10.1103/physrevd.64.064024 (2001).
  24. D. Birmingham, S. Carlip, and Y. Chen, Quasi-normal modes and black-hole quantum mechanics in 2 + 1 dimensions, Classical and Quantum Gravity 20, L239 (2003).
  25. P. Cañ ate, N. Breton, and L. Ortiz, (2+1)-dimensional static cyclic symmetric traversable wormhole: quasinormal modes and causality, Classical and Quantum Gravity 37, 055007 (2020).
  26. G. Panotopoulos and Ángel Rincón, Quasinormal modes of regular black holes with non linear-electrodynamical sources (2019), arXiv:1904.10847 [gr-qc] .
  27. A. Övgün and K. Jusufi, Quasinormal modes and greybody factors of f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) gravity minimally coupled to a cloud of strings in 2+1 dimensions, Annals of Physics 395, 138 (2018).
  28. Á . Rincón and G. Panotopoulos, Quasinormal modes of scale dependent black holes in (2+1)-dimensional einstein-power-maxwell theory, Physical Review D 97, 10.1103/physrevd.97.024027 (2018).
  29. G. Panotopoulos and Á . Rincón, Quasinormal modes of black holes in einstein-power-maxwell theory, International Journal of Modern Physics D 27, 1850034 (2018).
  30. P. A. González and Y. Vásquez, Dirac quasinormal modes of new type black holes in new massive gravity, The European Physical Journal C 74, 10.1140/epjc/s10052-014-2969-1 (2014).
  31. M. Catalá n and Y. Vásquez, Scalar field perturbations of a lifshitz black hole in conformal gravity in three dimensions, Physical Review D 90, 10.1103/physrevd.90.104002 (2014).
  32. B. Chen and Z. bo Xu, Quasi-normal modes of warped black holes and warped AdS/CFT correspondence, Journal of High Energy Physics 2009, 091 (2009).
  33. S. K. Chakrabarti, P. R. Giri, and K. S. Gupta, Scalar field dynamics in warped AdS3 black hole background, Physics Letters B 680, 500 (2009).
  34. S. Fernando, Spinning dilaton black holes in 2+1 dimensions: Quasinormal modes and the area spectrum, Physical Review D 79, 10.1103/physrevd.79.124026 (2009).
  35. S. Fernando, Quasinormal modes of charged scalars around dilaton black holes in 2+1 dimensions: Exact frequencies, Physical Review D 77, 10.1103/physrevd.77.124005 (2008).
  36. S. Fernando, Quasinormal modes of charged dilaton black holes in 2 + 1 dimensions, General Relativity and Gravitation 36, 71 (2004).
  37. R. C. Myers and B. Robinson, Black holes in quasi-topological gravity, Journal of High Energy Physics 2010, 10.1007/jhep08(2010)067 (2010).
  38. C. Martinez, C. Teitelboim, and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev. D 61, 104013 (2000), arXiv:hep-th/9912259 .
  39. R. D. B. Fontana, Quasinormal modes of charged btz black holes (2023a), arXiv:2305.05068 [gr-qc] .
  40. Ra⁢b⁢c⁢dsubscript𝑅𝑎𝑏𝑐𝑑R_{abcd}italic_R start_POSTSUBSCRIPT italic_a italic_b italic_c italic_d end_POSTSUBSCRIPT are the components of Riemann tensor.
  41. J. B. Griffiths and J. Podolsky, Exact Space-Times in Einstein’s General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2009).
  42. The action in dual description can only be obtained perturbatively.
  43. O. Gurtug, S. H. Mazharimousavi, and M. Halilsoy, 2+1-dimensional electrically charged black holes in einstein-power-maxwell theory, Physical Review D 85, 10.1103/physrevd.85.104004 (2012).
  44. G. Panotopoulos, Charged scalar fields around einstein-power-maxwell black holes, General Relativity and Gravitation 51, 76 (2019).
  45. The choice of p𝑝pitalic_p purely imaginary or equivalently β0<0subscript𝛽00\beta_{0}<0italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < 0 would bring a singular spacetime with a singularity at r=λ𝑟𝜆r=\lambdaitalic_r = italic_λ that we will not study here.
  46. C. Gundlach, R. H. Price, and J. Pullin, Late-time behavior of stellar collapse and explosions. i. linearized perturbations, Physical Review D 49, 883 (1994).
  47. R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793 (2011), arXiv:1102.4014 [gr-qc] .
  48. J. de Oliveira and R. Fontana, Three-dimensional black holes with quintessence, Physical Review D 98, 10.1103/physrevd.98.044005 (2018b).
  49. B. Cuadros-Melgar, R. Fontana, and J. de Oliveira, Gauss-bonnet black holes in (2+1) dimensions: Perturbative aspects and entropy features, Physical Review D 106, 10.1103/physrevd.106.124007 (2022).
  50. R. D. B. Fontana, Scalar field instabilities in charged btz black holes (2023b), arXiv:2306.02504 [gr-qc] .
  51. K. Destounis, Superradiant instability of charged scalar fields in higher-dimensional reissner-nordström-de sitter black holes, Physical Review D 100, 10.1103/physrevd.100.044054 (2019).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com