Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Magic distances for flat bands in twisted bilayer graphene (2401.09884v1)

Published 18 Jan 2024 in cond-mat.mes-hall, cond-mat.mtrl-sci, and cond-mat.str-el

Abstract: Twisted bilayer graphene is known to host isolated and relatively flat bands near charge neutrality, when tuned to specific magic angles. Nonetheless, these rotational misalignments, lying below 1.1 degrees, result in long-period moir\'e crystals, whose anomalous electronic properties are hardly accessible to reliable atomistic simulations. Here, we present a map of differently stacked graphene sheets, at arbitrary rotation angles corresponding to precise interplanar distances, into an equivalence class represented by magic-angle twisted bilayer graphene. We determine the equivalence relation in the class within a continuum model, and extend its definition to a tight-binding approach. Then, we use density functional theory to suggest that the magic-angle physics may be characterized by costly computational strategies on a twisted bilayer geometry, with conveniently large stacking angles. Our results may pave the way for an ab initio characterization of the unconventional topological phases and related excitations, associated with currently observed low-energy quasi-flat bands.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  2. J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Continuum model of the twisted graphene bilayer, Phys. Rev. B 86, 155449 (2012).
  3. G. Elizabeth, How magic angle graphene is stirring up physics, Nature 565, 15 (2019).
  4. A. K. Geim and I. V. Grigorieva, Van der waals heterostructures, Nature 499, 419 (2013).
  5. F. Yndurain, Pressure-induced magnetism in rotated graphene bilayers, Phys. Rev. B 99, 045423 (2019).
  6. X. Lin, H. Zhu, and J. Ni, Pressure-induced gap modulation and topological transitions in twisted bilayer and twisted double bilayer graphene, Phys. Rev. B 101, 155405 (2020).
  7. J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene bilayer with a twist: Electronic structure, Phys. Rev. Lett. 99, 256802 (2007).
  8. L. Balents, General continuum model for twisted bilayer graphene and arbitrary smooth deformations, SciPost Phys. 7, 048 (2019).
  9. G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of magic angles in twisted bilayer graphene, Phys. Rev. Lett. 122, 106405 (2019).
  10. G. Trambly de Laissardière, D. Mayou, and L. Magaud, Numerical studies of confined states in rotated bilayers of graphene, Phys. Rev. B 86, 125413 (2012).
  11. R. Bistritzer and A. H. MacDonald, Transport between twisted graphene layers, Phys. Rev. B 81, 245412 (2010).
  12. X. Lin and D. Tománek, Minimum model for the electronic structure of twisted bilayer graphene and related structures, Phys. Rev. B 98, 081410 (2018).
  13. J. C. Slater and G. F. Koster, Simplified lcao method for the periodic potential problem, Phys. Rev. 94, 1498 (1954).
  14. E. J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene, Phys. Rev. B 81, 161405 (2010).
  15. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
  16. F. Jollet, M. Torrent, and N. Holzwarth, Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format, Comput. Phys. Commun. 185, 1246 (2014).
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  18. H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976).
  19. G. F. Giuliani and G. Vignale, Quantum theory of the electron liquid (Cambridge Univ. Press, Cambridge, 2005).
  20. S. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer graphene: Moiré with a twist, Nano Letters 16, 5923 (2016).
  21. N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96, 075311 (2017).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 2 likes.