Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Higher-Point Gauge-Theory Couplings of Massive Spin-2 States in 4-Dimensional String Theories (2401.09781v1)

Published 18 Jan 2024 in hep-th

Abstract: We explicitly compute the (NS) sector conventional type-I superstring tree-level amplitudes at five points after compactifying to 4-D, express the QFT building block in the helicity basis, and give several attempts towards arbitrary $n$ points. More specifically, we consider the interaction of one first excited level and otherwise massless states of conventional type-I superstrings, where the four-dimensional states can, for instance, be realized via D$3$ branes. We construct the amplitude by using the Berends-Giele currents. From the recursion of Berends-Giele currents, we can generate the higher point amplitude. We also apply the BCFW recursion with massive external legs shifted and get the amplitude for arbitrary $n$ points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. G. Veneziano, Nuovo Cim. A 57, 190 (1968).
  2. E. D’Hoker and D. H. Phong, Commun. Math. Phys. 125, 469 (1989).
  3. S. He and O. Schlotterer, Phys. Rev. Lett. 118, 161601 (2017), arXiv:1612.00417 [hep-th] .
  4. S. Stieberger,   (2022), arXiv:2212.06816 [hep-th] .
  5. S. P. Chen Huang,  to appear .
  6. S. J. Parke and T. R. Taylor, Phys. Rev. Lett. 56, 2459 (1986).
  7. H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity (Cambridge University Press, 2015).
  8. F. A. Berends and W. T. Giele, Nucl. Phys. B 306, 759 (1988).
  9. F. A. Berends and W. T. Giele, Nucl. Phys. B 313, 595 (1989).
  10. Y.-X. Tao, JHEP 09, 193 (2023a), arXiv:2307.14772 [hep-th] .
  11. Q. Chen and Y.-X. Tao, JHEP 08, 038 (2023), arXiv:2301.08043 [hep-th] .
  12. Y.-X. Tao, Phys. Rev. D 108, 125020 (2023b), arXiv:2309.15657 [hep-th] .
  13. Y.-X. Tao and Q. Chen, JHEP 02, 030 (2023), arXiv:2210.15411 [hep-th] .
  14. S. Caron-Huot and D. O’Connell, JHEP 08, 014 (2011), arXiv:1010.5487 [hep-th] .
  15. S. F. Novaes and D. Spehler, Nucl. Phys. B 371, 618 (1992).
  16. D. Spehler and S. F. Novaes, Phys. Rev. D 44, 3990 (1991).
  17. A. Ochirov, JHEP 04, 089 (2018), arXiv:1802.06730 [hep-ph] .
  18. L. J. Dixon, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 95): QCD and Beyond (1996) pp. 539–584, arXiv:hep-ph/9601359 .
  19. R. Lipinski Jusinskas, JHEP 12, 143 (2019), arXiv:1909.04069 [hep-th] .
  20. W.-Z. Feng and T. R. Taylor, Nucl. Phys. B 856, 247 (2012), arXiv:1110.1087 [hep-th] .
  21. S. Ballav and A. Manna, JHEP 03, 295 (2021), arXiv:2010.14139 [hep-th] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: