Causal Dynamical Triangulations: Gateway to Nonperturbative Quantum Gravity (2401.09399v1)
Abstract: A powerful strategy to treat quantum field theories beyond perturbation theory is by putting them on a lattice. However, the dynamical and symmetry structure of general relativity have for a long time stood in the way of a well-defined lattice formulation of quantum gravity. These issues are resolved by using Causal Dynamical Triangulations (CDT) to implement a nonperturbative, background-independent path integral for Lorentzian quantum gravity on dynamical lattices. We describe the essential ingredients of this formulation, and how it has allowed us to move away from formal considerations in quantum gravity to extracting quantitative results on the spectra of diffeomorphism-invariant quantum observables, describing physics near the Planck scale. Key results to date are the emergence of a de Sitter-like quantum universe and the discovery of an anomalous spectral dimension at short distances.
- J. Ambjørn “Elementary Introduction to Quantum Geometry” TaylorFrancis, 2022 arXiv:2204.00859
- J. Ambjørn, K.N. Anagnostopoulos and J. Jurkiewicz “Abelian gauge fields coupled to simplicial quantum gravity” In Journal of High Energy Physics 08, 1999, pp. 016 arXiv:hep-lat/9907027
- J. Ambjørn, P. Bialas and J. Jurkiewicz “Connected correlators in quantum gravity” In Journal of High Energy Physics 02, 1999, pp. 005 arXiv:hep-lat/9812015
- “Signature change of the metric in CDT quantum gravity?” In Journal of High Energy Physics 08, 2015, pp. 033 arXiv:1503.08580 [hep-th]
- “CDT quantum toroidal spacetimes: an overview” In Universe 7, 2021, pp. 79 DOI: 10.3390/universe7040079
- J. Ambjørn, B. Durhuus and T. Jonsson “Quantum Geometry: A Statistical Field Theory Approach” Cambridge University Press, 2005 DOI: 10.1017/CBO9780511524417
- “The effective action in 4-dim CDT. The transfer matrix approach” In Journal of High Energy Physics, 2014, pp. 34 DOI: 10.1007/JHEP06(2014)034
- “Planckian birth of the quantum de Sitter universe” In Phys. Rev. Lett. 100, 2008, pp. 091304 arXiv:0712.2485 [hep-th]
- “The nonperturbative quantum de Sitter universe” In Physical Review D 78, 2008, pp. 063544 arXiv:0807.4481 [hep-th]
- “Nonperturbative quantum gravity” In Physics Reports 519, 2012, pp. 127–210 arXiv:1203.3591 [hep-th]
- “Wilson loops in nonperturbative quantum gravity” In Physical Review D 92, 2015, pp. 024013 arXiv:1504.01065 [gr-qc]
- J. Ambjørn, J. Jurkiewicz and R. Loll “Dynamically triangulating Lorentzian quantum gravity” In Nuclear Physics B 610, 2001, pp. 347–382 arXiv:hep-th/0105267
- J. Ambjørn, J. Jurkiewicz and R. Loll “The spectral dimension of the universe is scale-dependent” In Physical Review Letters 95, 2005, pp. 171301 arXiv:hep-th/0505113
- J. Ambjørn, J. Jurkiewicz and R. Loll “Reconstructing the universe” In Physical Review D 72, 2005, pp. 064014 arXiv:hep-th/0505154
- “Nonperturbative Lorentzian quantum gravity, causality and topology change” In Nuclear Physics B 536, 1998, pp. 407–434 arXiv:hep-th/9805108
- “The de Sitter instanton from Euclidean Dynamical Triangulations” In Physical Review D 103, 2021, pp. 14504 DOI: 10.1103/PhysRevD.103.114504
- S. Carlip “Dimension and dimensional reduction in quantum gravity” In Classical and Quantum Gravity 34, 2017, pp. 193001 arXiv:1705.05417 [gr-qc]
- “Spectral observables and gauge field couplings in Causal Dynamical Triangulations”, 2023 arXiv:2307.04547 [hep-th]
- D.N. Coumbe, J. Gizbert-Studnicki and J. Jurkiewicz “Exploring the new phase transition of CDT” In Journal of High Energy Physics, 2016, pp. 144 arXiv:1510.08672 [hep-th]
- “Wave function of the Universe” In Physical Review D 28 American Physical Society, 1983, pp. 2960–2975 DOI: 10.1103/PhysRevD.28.2960
- “Introducing quantum Ricci curvature” In Physical Review D 97, 2018, pp. 046008 arXiv:1712.08847 [hep-th]
- “Implementing quantum Ricci curvature” In Physical Review D 97, 2018, pp. 106017 arXiv:1802.10524 [hep-th]
- “How round is the quantum de Sitter universe?” In European Physical Journal C 80, 2020, pp. 990 arXiv:2006.06263 [hep-th]
- R. Loll “Discrete approaches to quantum gravity in four-dimensions” In Living Reviews in Relativity 1, 1998, pp. 13 arXiv:gr-qc/9805049
- R. Loll “Quantum gravity from Causal Dynamical Triangulations: a review” In Classical and Quantum Gravity 37, 2020, pp. 013002 arXiv:1905.08669 [hep-th]
- R. Loll “Quantum curvature as key to the quantum universe” In Handbook of Quantum Gravity Springer, Singapore, 2024 arXiv:2306.13782 [gr-qc]
- “Measuring the homogeneity of the quantum universe” In Physical Review D 107, 2023, pp. 086013 arXiv:2302.10256 [hep-th]
- “Quantum Fields on a Lattice” Cambridge University Press, 1994 DOI: 10.1017/CBO9780511470783
- T. Regge “General relativity without coordinates” In Il Nuovo Cimento 19, 1961, pp. 558–571 DOI: 10.1007/BF02733251
- “Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety” Cambridge University Press, 2019
- C. Teitelboim “Causality versus gauge invariance in quantum gravity and supergravity” In Physical Review Letters 50, 1983, pp. 705–708 DOI: 10.1103/PhysRevLett.50.705
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.