Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probing black holes in a dark matter spike of M87 using quasinormal modes (2401.09182v2)

Published 17 Jan 2024 in gr-qc

Abstract: Dark matter density can be significantly enhanced by the supermassive black hole at the galactic center, leading to a structure called dark matter spike. Dark matter spike may change the spacetime properties of black holes that constitute deviations from GR black holes. Based on these interesting background, we construct a set of solutions of black holes in a dark matter spike under the Newtonian approximation and full relativity. Combining the mass model of M87, we study the quasinormal modes of black holes in the scalar field and axial gravitational perturbation, then compared them with Schwarzschild black hole. Besides, the impacts of dark matter on the quasinormal mode of black holes have been studied in depth. In particular, in the axial gravitational perturbation, our results show that the impacts of dark matter spike on the quasinormal mode of black holes can reach up to $10{-4}$. These new features from quasinormal mode of black holes under the Newtonian approximation and full relativity may provide some help for the establishment of the final dark matter model, and provide a new thought for the indirect detection of dark matter.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. arXiv:1606.04855, doi:10.1103/PhysRevLett.116.241103.
  2. arXiv:1602.03837, doi:10.1103/PhysRevLett.116.061102.
  3. arXiv:1709.09660, doi:10.1103/PhysRevLett.119.141101.
  4. arXiv:1710.05832, doi:10.1103/PhysRevLett.119.161101.
  5. arXiv:1102.4014, doi:10.1103/RevModPhys.83.793.
  6. arXiv:1803.08060, doi:10.1103/PhysRevD.97.084032.
  7. arXiv:1711.00391, doi:10.1103/PhysRevD.97.024040.
  8. arXiv:1703.10612, doi:10.1103/PhysRevLett.120.081101.
  9. arXiv:1608.08637, doi:10.1103/PhysRevD.94.084031.
  10. arXiv:1602.07309, doi:10.1103/PhysRevLett.116.171101.
  11. arXiv:2011.04032, doi:10.1103/PhysRevD.103.024058.
  12. arXiv:2104.00074, doi:10.1103/PhysRevD.104.044045.
  13. arXiv:2206.09954, doi:10.1088/1475-7516/2022/11/006.
  14. arXiv:astro-ph/9508025, doi:10.1086/177173.
  15. arXiv:astro-ph/0303594.
  16. arXiv:2109.01640, doi:10.1016/j.physletb.2021.136734.
  17. arXiv:2202.02205, doi:10.3847/1538-4357/ac76bc.
  18. arXiv:astro-ph/9906391, doi:10.1103/PhysRevLett.83.1719.
  19. arXiv:1305.2619, doi:10.1103/PhysRevD.88.063522.
  20. arXiv:1707.06302, doi:10.1103/PhysRevD.96.083014.
  21. arXiv:2104.13158, doi:10.1088/1475-7516/2021/09/007.
  22. arXiv:2103.12439, doi:10.3847/1538-4357/ac05cc.
  23. arXiv:2112.14041, doi:10.1007/s11433-022-1930-9.
  24. arXiv:2204.12508, doi:10.1103/PhysRevD.106.044027.
  25. arXiv:2104.04332, doi:10.1103/PhysRevD.104.104042.
  26. arXiv:2204.11563, doi:10.1140/epjc/s10052-023-11739-w.
  27. arXiv:2111.04966, doi:10.1103/PhysRevD.104.124082.
  28. arXiv:2201.11352, doi:10.1016/j.dark.2022.101078.
  29. arXiv:2206.04195, doi:10.3847/1538-4357/ac940b.
  30. arXiv:2303.09215, doi:10.1103/PhysRevD.108.024070.
  31. arXiv:1608.00971, doi:10.1093/mnras/stw2759.
  32. arXiv:2303.09284, doi:10.1093/mnras/stad3282.
  33. arXiv:2005.11933, doi:10.1088/1674-1137/abc680.
  34. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
  35. doi:10.1088/1475-7516/2018/09/038. URL https://doi.org/10.1088/1475-7516/2018/09/038
  36. arXiv:1905.11803, doi:10.1103/PhysRevD.100.044012.
  37. doi:10.1103/PhysRevD.63.084014. URL https://link.aps.org/doi/10.1103/PhysRevD.63.084014
  38. doi:10.1103/PhysRevD.64.044024. URL https://link.aps.org/doi/10.1103/PhysRevD.64.044024
  39. doi:10.1103/PhysRevD.72.044027. URL https://link.aps.org/doi/10.1103/PhysRevD.72.044027
  40. doi:10.1103/RevModPhys.83.793. URL https://link.aps.org/doi/10.1103/RevModPhys.83.793
  41. doi:10.1103/PhysRevD.75.124017. URL https://link.aps.org/doi/10.1103/PhysRevD.75.124017
  42. arXiv:2006.16522, doi:10.1103/PhysRevD.102.124051.
  43. doi:10.1086/184453.
  44. doi:10.1103/PhysRevD.35.3621. URL https://link.aps.org/doi/10.1103/PhysRevD.35.3621
  45. doi:10.1103/PhysRevD.35.3632. URL https://link.aps.org/doi/10.1103/PhysRevD.35.3632
  46. doi:10.1103/PhysRevD.68.024018. URL https://link.aps.org/doi/10.1103/PhysRevD.68.024018
  47. doi:10.1103/PhysRevD.68.124017. URL https://link.aps.org/doi/10.1103/PhysRevD.68.124017
  48. arXiv:gr-qc/0512160, doi:10.1103/PhysRevD.73.064030.
  49. arXiv:1902.08922, doi:10.1103/PhysRevD.100.044036.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.