Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bang-bang preparation of quantum many-body ground states in two dimensions: optimization of the algorithm with a two-dimensional tensor network (2401.09158v4)

Published 17 Jan 2024 in quant-ph, cond-mat.other, and physics.comp-ph

Abstract: A bang-bang (BB) algorithm prepares the ground state of a two-dimensional (2D) quantum many-body Hamiltonian $H=H_1+H_2$ by evolving an initial product state alternating between $H_1$ and $H_2$. We use the neighborhood tensor update to simulate the BB evolution with an infinite pair-entangled projected state (iPEPS). The alternating sequence is optimized with the final energy as a cost function. The energy is calculated with the tangent space methods for the sake of their stability. The method is benchmarked in the 2D transverse field quantum Ising model near its quantum critical point against a ground state obtained by variational optimization of the iPEPS. The optimal BB sequence differs non-perturbatively from a sequence simulating quantum annealing or adiabatic preparation (AP) of the ground state. The optimal BB energy converges with the number of bangs much faster than the optimal AP energy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Preskill, Quantum 2, 79 (2018).
  2. F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066  (2004).
  3. R. Orús and G. Vidal, Phys. Rev. B 80, 094403 (2009).
  4. P. Corboz, Phys. Rev. B 94, 035133 (2016a).
  5. P. Corboz, Phys. Rev. B 93, 045116 (2016b).
  6. M. Rader and A. M. Läuchli, Phys. Rev. X 8, 031030 (2018).
  7. E. Farhi, J. Goldstone,  and S. Gutmann, “A quantum approximate optimization algorithm,”  (2014), arXiv:1411.4028 [quant-ph] .
  8. M. P. Zaletel and F. Pollmann, Phys. Rev. Lett. 124, 037201 (2020).
  9. J. Dziarmaga, Phys. Rev. B 104, 094411 (2021).
  10. R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
  11. P. C. G. Vlaar and P. Corboz, Phys. Rev. B 103, 205137 (2021).
  12. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
  13. G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
  14. G. Evenbly and G. Vidal, Phys. Rev. Lett. 112, 220502 (2014a).
  15. G. Evenbly and G. Vidal, Phys. Rev. B 89, 235113 (2014b).
  16. C. Hubig and J. I. Cirac, SciPost Phys. 6, 31 (2019).
  17. A. Abendschein and S. Capponi, Phys. Rev. Lett. 101, 227201 (2008).
  18. J. Dziarmaga, Phys. Rev. B 105, 054203 (2022a).
  19. R. Kaneko and I. Danshita, Communications Physics 5, 65 (2022).
  20. R. Kaneko and I. Danshita, “Dynamics of correlation spreading in low-dimensional transverse-field ising models,”  (2023).
  21. J. Dziarmaga and J. M. Mazur, Phys. Rev. B 107, 144510 (2023).
  22. H. F. Trotter, Proc. Amer. Math. Soc. 10, 545 (1959).
  23. M. Suzuki, J. Phys. Soc. Jpn. 21, 2274 (1966).
  24. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
  25. J. Dziarmaga, Phys. Rev. B 106, 014304 (2022b).
  26. P. Corboz, Phys. Rev. B 94, 035133 (2016c).
  27. H. W. J. Blöte and Y. Deng, Phys. Rev. E 66, 066110 (2002).
  28. A. del Campo and K. Kim, New J. Phys. 21, 050201 (2019).
  29. J. Wurtz and P. J. Love, Quantum 6, 635 (2022).
  30. R. Hooke and T. A. Jeeves, Journal of the ACM 8, 212 (1961).
  31. T. M. Inc., “Matlab version: 9.14.0.2286388 (r2023a) update 3,”  (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube