Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Forking paths in financial economics (2401.08606v1)

Published 25 Nov 2023 in q-fin.GN and stat.ME

Abstract: We argue that spanning large numbers of degrees of freedom in empirical analysis allows better characterizations of effects and thus improves the trustworthiness of conclusions. Our ideas are illustrated in three studies: equity premium prediction, asset pricing anomalies and risk premia estimation. In the first, we find that each additional degree of freedom in the protocol expands the average range of $t$-statistics by at least 30%. In the second, we show that resorting to forking paths instead of bootstrapping in multiple testing raises the bar of significance for anomalies: at the 5% confidence level, the threshold for bootstrapped statistics is 4.5, whereas with paths, it is at least 8.2, a bar much higher than those currently used in the literature. In our third application, we reveal the importance of particular steps in the estimation of premia. In addition, we use paths to corroborate prior findings in the three topics. We document heterogeneity in our ability to replicate prior studies: some conclusions seem robust, others do not align with the paths we were able to generate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (198)
  1. Abadie, A. (2020). Statistical nonsignificance in empirical economics. American Economic Review: Insights 2(2), 193–208.
  2. Noisy factors. SSRN Working Paper 3930228.
  3. Intangible capital and the value factor: Has your value definition just expired? Journal of Portfolio Management 46(7), 83–99.
  4. Amihud, Y. and C. M. Hurvich (2004). Predictive regressions: A reduced-bias estimation method. Journal of Financial and Quantitative Analysis 39(4), 813–841.
  5. Scientists rise up against statistical significance. Nature 567, 305–307.
  6. Andrews, D. W. and J. C. Monahan (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica 60(4), 953–966.
  7. Identification of and correction for publication bias. American Economic Review 109(8), 2766–94.
  8. Using stocks or portfolios in tests of factor models. Journal of Financial and Quantitative Analysis 55(3), 709–750.
  9. Invariant risk minimization. arXiv Preprint (1907.02893).
  10. The devil in HML’s details. Journal of Portfolio Management 39(4), 49–68.
  11. Value and momentum everywhere. Journal of Finance 68(3), 929–985.
  12. Integrating factor models. Journal of Finance 78(3), 1593–1646.
  13. The empirical distribution of a large number of correlated normal variables. Journal of the American Statistical Association 110(511), 1217–1228.
  14. Pseudo-mathematics and financial charlatanism: The effects of backtest overfitting on out-of-sample performance. Notices of the American Mathematical Society 61(5), 458–471.
  15. Bailey, D. H. and M. Lopez de Prado (2021). Finance is not excused: Why finance should not flout basic principles of statistics. SSRN Working Paper 3895330.
  16. Maxing out: Stocks as lotteries and the cross-section of expected returns. Journal of Financial Economics 99(2), 427–446.
  17. The scale of predictability. Journal of Econometrics 208(1), 120–140.
  18. Barnett, A. G. and J. D. Wren (2019). Examination of cis in health and medical journals from 1976 to 2019: an observational study. BMJ open 9(11), e032506.
  19. Skill, scale, and value creation in the mutual fund industry. Journal of Finance 77(1), 601–638.
  20. Momentum has its moments. Journal of Financial Economics 116(1), 111–120.
  21. Basit, T. (2003). Manual or electronic? The role of coding in qualitative data analysis. Educational research 45(2), 143–154.
  22. Begg, C. B. and J. A. Berlin (1988). Publication bias: a problem in interpreting medical data. Journal of the Royal Statistical Society: Series A (Statistics in Society) 151(3), 419–445.
  23. Redefine statistical significance. Nature Human Behaviour 2(1), 6–10.
  24. Berry-esseen bounds for statistics of weakly dependent samples. Bernoulli 3(3), 329–349.
  25. Survey curious? Start-up guide and best practices for running surveys and experiments online. SSRN Working Paper 3701330.
  26. Factor returns and out-of-sample alphas: Factor construction matters. SSRN Working Paper 4281769.
  27. Macromomentum: returns predictability in international equity indices. Journal of Business 79(1), 429–451.
  28. Publication bias and editorial statement on negative findings. Economic Journal 130(629), 1226–1247.
  29. Dividend taxes and the allocation of capital. American Economic Review 112(9), Retracted.
  30. Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, 3–62.
  31. Similarity measures for categorical data: A comparative evaluation. In Proceedings of the 2008 SIAM International Conference on Data Mining, pp.  243–254. SIAM.
  32. Biases in long-horizon predictive regressions. Journal of Financial Economics 145(3), 937–969.
  33. The myth of long-horizon predictability. Review of Financial Studies 21(4), 1577–1605.
  34. Boylan, J. E. (2016). Reproducibility. IMA Journal of Management Mathematics 27(2), 107–108.
  35. Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. Proceedings of the National Academy of Sciences 119(44), e2203150119.
  36. Methods matter: P-hacking and publication bias in causal analysis in economics. American Economic Review 110(11), 3634–60.
  37. We need to talk about mechanical turk: What 22,989 hypothesis tests tell us about publication bias and p-hacking in online experiments. SSRN Working Paper 4188289.
  38. Star wars: The empirics strike back. American Economic Journal: Applied Economics 8(1), 1–32.
  39. Model selection: an integral part of inference. Biometrics 53(2), 603–618.
  40. Bühlmann, P. (2020). Invariance, causality and robustness. Statistical Science 35(3), 404–426.
  41. Model selection and multimodel inference. Springer-Verlag. 2nd Edution.
  42. Burnham, K. P. and D. R. Anderson (2004b). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research 33(2), 261–304.
  43. Evaluating replicability of laboratory experiments in economics. Science 351(6280), 1433–1436.
  44. Carver, R. (1978). The case against statistical significance testing. Harvard Educational Review 48(3), 378–399.
  45. Profitability of momentum strategies in the international equity markets. Journal of Financial and Quantitative Analysis 35(2), 153–172.
  46. Discontinuous distribution of test statistics around significance thresholds in empirical accounting studies. SSRN Working Paper 3762342.
  47. Chen, A. Y. (2021). Most claimed statistical findings in cross-sectional return predictability are likely true. SSRN Working Paper 3912915.
  48. Peer-reviewed theory does not help predict the cross-section of stock returns. arXiv Preprint (2212.10317).
  49. Zeroing in on the expected returns of anomalies. Journal of Financial and Quantitative Analysis 58(3), 968–1004.
  50. Open source cross-sectional asset pricing. Critical Finance Review 27(2), 207–264.
  51. Publication bias in asset pricing research. arXiv Preprint (2209.13623).
  52. Chen, L. and W. B. Wu (2018). Concentration inequalities for empirical processes of linear time series. J. Mach. Learn. Res. 18, 1–46.
  53. A general decision theory for huber’s ϵitalic-ϵ\epsilonitalic_ϵ-contamination model. Electronic Journal of Statistics 10, 3752–3774.
  54. Estimating the anomaly base rate. Journal of Financial Economics 140(1), 101–126.
  55. The null result penalty. SSRN Working Paper 4144648.
  56. Anomalies and false rejections. Review of Financial Studies 33(5), 2134–2179.
  57. Transparency, reproducibility, and the credibility of economics research. Journal of Economic Literature 56(3), 920–80.
  58. A theory of statistical inference for ensuring the robustness of scientific results. Management Science 67(10), 6174–6197.
  59. Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Science 349(6251), aac4716.
  60. The economics of computational reproducibility. SSRN Working Paper 3418896.
  61. Are we building our science on quicksand? Current reproducibility practices in management. In Academy of Management Proceedings, Volume 2022, pp.  15461.
  62. Dissemination, publication, and impact of finance research: When novelty meets conventionality. Review of Finance 27(1), 79–141.
  63. Daniel, K. and T. J. Moskowitz (2016). Momentum crashes. Journal of Financial Economics 122(2), 221–247.
  64. Are all economic hypotheses false? Journal of Political Economy 100(6), 1257–1272.
  65. De Prado, M. L. (2018). The 10 reasons most machine learning funds fail. Journal of Portfolio Management 44(6), 120–133.
  66. Demmel, J. (1992). The componentwise distance to the nearest singular matrix. SIAM Journal on Matrix Analysis and Applications 13(1), 10–19.
  67. Diananda, P. (1955). The central limit theorem for m-dependent variables. In Mathematical Proceedings of the Cambridge Philosophical Society, Volume 51, pp.  92–95.
  68. Data snooping in equity premium prediction. International Journal of Forecasting 37(1), 72–94.
  69. Publication bias and clinical trials. Controlled Clinical Trials 8(4), 343–353.
  70. Doucouliagos, C. and T. D. Stanley (2013). Are all economic facts greatly exaggerated? Theory competition and selectivity. Journal of Economic Surveys 27(2), 316–339.
  71. Doucouliagos, H. and T. D. Stanley (2009). Publication selection bias in minimum-wage research? A meta-regression analysis. British Journal of Industrial Relations 47(2), 406–428.
  72. Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society: Series B (Methodological) 57(1), 45–70.
  73. What is meant by" replication" and why does it encounter resistance in economics? American Economic Review 107(5), 46–51.
  74. Screening p𝑝pitalic_p-hackers: Dissemination noise as bait. arXiv Preprint (2103.09164).
  75. Detecting p-hacking. Econometrica 90(2), 887–906.
  76. Do cross-sectional predictors contain systematic information? Journal of Financial and Quantitative Analysis 58(3), 1172–1201.
  77. Fabozzi, F. J. and M. L. de Prado (2018). Being honest in backtest reporting: A template for disclosing multiple tests. Journal of Portfolio Management 45(1), 141–147.
  78. Fama, E. F. and K. R. French (1992). The cross-section of expected stock returns. Journal of Finance 47(2), 427–465.
  79. Fama, E. F. and K. R. French (2015). A five-factor asset pricing model. Journal of Financial Economics 116(1), 1–22.
  80. Fama, E. F. and J. D. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81(3), 607–636.
  81. Estimation of the false discovery proportion with unknown dependence. Journal of the Royal Statistical Society. Series B, Statistical methodology 79(4), 1143.
  82. Fanelli, D. (2018). Opinion: Is science really facing a reproducibility crisis, and do we need it to? Proceedings of the National Academy of Sciences 115(11), 2628–2631.
  83. Meta-assessment of bias in science. Proceedings of the National Academy of Sciences 114(14), 3714–3719.
  84. Farcomeni, A. (2008). A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. Statistical methods in medical research 17(4), 347–388.
  85. Pockets of predictability. Journal of Finance 78(3), 1279–1341.
  86. Taming the factor zoo: A test of new factors. Journal of Finance 75(3), 1327–1370.
  87. Benchmark priors for bayesian model averaging. Journal of Econometrics 100(2), 381–427.
  88. All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81.
  89. Which findings should be published? American Economic Journal: Microeconomics 14(1), 1–38.
  90. Time-varying risk premium in large cross-sectional equity data sets. Econometrica 84(3), 985–1046.
  91. The statistical crisis in science. American Scientist 102, 460–465.
  92. Thousands of alpha tests. Review of Financial Studies 34(7), 3456–3496.
  93. Golub, G. H. and J. H. Wilkinson (1966). Note on the iterative refinement of least squares solution. Numerische Mathematik 9(2), 139–148.
  94. Momentum is really short-term momentum. Journal of Banking & Finance 50, 169–182.
  95. Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology.
  96. A comprehensive 2022 look at the empirical performance of equity premium prediction. SSRN Working Paper 3929119.
  97. Granger, C. W. and H. F. Uhlig (1990). Reasonable extreme-bounds analysis. Journal of Econometrics 44(1-2), 159–170.
  98. Grcar, J. F. (2003). Optimal sensitivity analysis of linear least squares. Lawrence Berkeley National Laboratory, Report LBNL-52434 99.
  99. Greene, W. H. (2018). Econometric analysis - Eighth Edition. Pearson Education India.
  100. Momentum investing and business cycle risk: Evidence from pole to pole. Journal of Finance 58(6), 2515–2547.
  101. Empirical asset pricing via machine learning. Review of Financial Studies 33(5), 2223–2273.
  102. Hansen, B. E. (2007). Least squares model averaging. Econometrica 75(4), 1175–1189.
  103. The model confidence set. Econometrica 79(2), 453–497.
  104. Harvey, C. R. (2017). Presidential address: The scientific outlook in financial economics. Journal of Finance 72(4), 1399–1440.
  105. Harvey, C. R. (2021). Be skeptical of asset management research. Available at SSRN Working Paper 3906277.
  106. False (and missed) discoveries in financial economics. Journal of Finance 75(5), 2503–2553.
  107. Lucky factors. Journal of Financial Economics 141(2), 413–435.
  108. Uncovering the iceberg from its tip: A model of publication bias and p-hacking. SSRN Working Paper 3865813.
  109. An evaluation of alternative multiple testing methods for finance applications. Review of Asset Pricing Studies 10(2), 199–248.
  110. … and the cross-section of expected returns. Review of Financial Studies 29(1), 5–68.
  111. The extent and consequences of p-hacking in science. PLoS Biology 13(3), e1002106.
  112. Hjalmarsson, E. (2011). New methods for inference in long-horizon regressions. Journal of Financial and Quantitative Analysis 46(3), 815–839.
  113. The central limit theorem for dependent random variables. Duke Mathematical Journal 15(3), 773–780.
  114. Bayesian model averaging: A tutorial. Statistical Science 14(4), 382–417.
  115. Expanding the scope of reproducibility research through data analysis replications. Organizational Behavior and Human Decision Processes 164, 192–202.
  116. Hollenbeck, J. R. and P. M. Wright (2017). Harking, sharking, and tharking: Making the case for post hoc analysis of scientific data.
  117. How robust are empirical factor models to the choice of breakpoints? SSRN Working Paper 3924821.
  118. Replicating anomalies. Review of Financial Studies 33(5), 2019–2133.
  119. Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs. Proceedings of the National Academy of Sciences 120(23), e2215572120.
  120. Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics 35(1), 73–101.
  121. The influence of hidden researcher decisions in applied microeconomics. Economic Inquiry 59, 944–960.
  122. Imbens, G. W. (2021). Statistical significance, p𝑝pitalic_p-values, and the reporting of uncertainty. Journal of Economic Perspectives 35(3), 157–74.
  123. The power of bias in economics research. Economic Journal 127(605), F236–F265.
  124. Ioannidis, J. P. (2005). Why most published research findings are false. PLoS medicine 2(8), e124.
  125. Returns to buying winners and selling losers: Implications for stock market efficiency. Journal of Finance 48(1), 65–91.
  126. Is there a replication crisis in finance? Journal of Finance Forthcoming.
  127. Jirak, M. (2016). Berry–esseen theorems under weak dependence. Annals of Probability 44(3), 2024–2063.
  128. Jirak, M. (2023). A berry-esseen bound with (almost) sharp dependence conditions. Bernoulli 29(2), 1219–1245.
  129. Jørgensen, T. H. (2023). Sensitivity to calibrated parameters. Review of Economics and Statistics 105(2), 474–481.
  130. Leakage and the reproducibility crisis in ml-based science. arXiv Preprint 2207.07048.
  131. Kasy, M. (2021). Of forking paths and tied hands: Selective publication of findings, and what economists should do about it. Journal of Economic Perspectives 35(3), 175–92.
  132. Kerr, N. L. (1998). Harking: Hypothesizing after the results are known. Personality and social psychology review 2(3), 196–217.
  133. Cooperative property rights and development: Evidence from land reform in El Salvador: A Comment. Journal of Political Economy Forthcoming(1).
  134. Uniform Chernoff and Dvoretzky-Kiefer-Wolfowitz-type inequalities for markov chains and related processes. Journal of Applied Probability 51(4), 1100–1113.
  135. Reporting the fragility of regression estimates. Review of Economics and Statistics 65(2), 306–317.
  136. Leamer, E. E. (1985). Sensitivity analyses would help. American Economic Review 75(3), 308–313.
  137. Leek, J. T. and L. R. Jager (2017). Is most published research really false? Annual Review of Statistics and Its Application 4, 109–122.
  138. Lo, A. W. and A. C. MacKinlay (1990). Data-snooping biases in tests of financial asset pricing models. Review of Financial Studies 3(3), 431–467.
  139. Loh, P.-L. and X. L. Tan (2018). High-dimensional robust precision matrix estimation: Cellwise corruption under ϵitalic-ϵ\epsilonitalic_ϵ-contamination. Electronic Journal of Statistics 12(1), 1429–1467.
  140. An open-source tool to assess the carbon footprint of research. arXiv Preprint (2101.10124).
  141. Critical values robust to p-hacking. arXiv Preprint (2005.04141).
  142. Abandon statistical significance. American Statistician 73, 235–245.
  143. Non-standard errors. Journal of Finance Forthcoming.
  144. Milkman, K. et al. (2021). Megastudies improve the impact of applied behavioral science. Nature 600, 478–483.
  145. Mitton, T. (2022). Methodological variation in empirical corporate finance. Review of Financial Studies 35(2), 527–575.
  146. Monahan, T. and J. A. Fisher (2010). Benefits of ‘observer effects’: lessons from the field. Qualitative research 10(3), 357–376.
  147. Moral-Benito, E. (2015). Model averaging in economics: An overview. Journal of Economic Surveys 29(1), 46–75.
  148. Documentation of the file drawer problem in academic finance journals. Journal of Investing 27(1), 143–147.
  149. Do industries explain momentum? Journal of Finance 54(4), 1249–1290.
  150. Replication studies in economics—how many and which papers are chosen for replication, and why? Research Policy 48(1), 62–83.
  151. Factorial designs, model selection, and (incorrect) inference in randomized experiments. SSRN Working Paper 3551804.
  152. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3), 703–708.
  153. Novy-Marx, R. (2012). Is momentum really momentum? Journal of Financial Economics 103(3), 429–453.
  154. Publication bias in editorial decision making. Journal of the American Medical Association 287(21), 2825–2828.
  155. Orey, S. (1958). A central limit theorem for m-dependent random variables. Duke Mathematical Journal 25(4), 543–546.
  156. Computational reproducibility in finance: Evidence from 1,000 tests. SSRN Working Paper 4064172.
  157. Causal inference by using invariant prediction: identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(5), 947–1012.
  158. Do economists replicate? Journal of Economic Behavior and Organization 212, 219–232.
  159. Invariant causal prediction for sequential data. Journal of the American Statistical Association 114(527), 1264–1276.
  160. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92(437), 179–191.
  161. Risk management in financial institutions. Journal of Finance 75(2), Retracted.
  162. Stepwise multiple testing as formalized data snooping. Econometrica 73(4), 1237–1282.
  163. Balanced control of generalized error rates. Annals of Statistics 38(1), 598–633.
  164. Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological bulletin 86(3), 638–641.
  165. Rouwenhorst, K. G. (1998). International momentum strategies. Journal of Finance 53(1), 267–284.
  166. Information aggregation and p-hacking. Management Science 66(4), 1605–1626.
  167. Nonreplicable publications are cited more than replicable ones. Science Advances 7(21), eabd1705.
  168. An analysis of retracted papers in computer science. Plos one 18(5), e0285383.
  169. P-curve: a key to the file-drawer. Journal of Experimental Psychology: General 143(2), 534.
  170. p-curve and effect size: Correcting for publication bias using only significant results. Perspectives on Psychological Science 9(6), 666–681.
  171. Specification curve analysis. Nature Human Behaviour 4(11), 1208–1214.
  172. Have risk premia vanished? Journal of Financial Economics 145(2), 553–576.
  173. Non-standard errors in asset pricing: Mind your sorts. SSRN Working Paper 4136672.
  174. Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics 54(3), 375–421.
  175. Stanley, T. D. (2005). Beyond publication bias. Journal of Economic Surveys 19(3), 309–345.
  176. Steel, M. F. (2020). Model averaging and its use in economics. Journal of Economic Literature 58(3), 644–719.
  177. Sterling, T. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance—or vice versa. Journal of the American Statistical Association 54(285), 30–34.
  178. Stroebe, W. (2019). What can we learn from many labs replications? Basic and Applied Social Psychology 41(2), 91–103.
  179. Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PloS One 14(4), e0215052.
  180. van Zwet, E. W. and E. A. Cator (2021). The significance filter, the winner’s curse and the need to shrink. Statistica Neerlandica 75(4), 437–452.
  181. Vilhuber, L. (2020). Reproducibility and replicability in economics. Harvard Data Science Review 2(4).
  182. (When) should you adjust inferences for multiple hypothesis testing? arXiv Preprint (2104.13367).
  183. Vu, P. (2022). Can the replication rate tell us about publication bias? arxiv Preprint (2206.15023).
  184. Non-standard errors in portfolio sorts. SSRN Working Paper 4164117.
  185. Confounder adjustment in multiple hypothesis testing. Annals of Statistics 45(5), 1863.
  186. Moving to a world beyond “p< 0.05”. American Statistician 73(sup1), 1–19.
  187. A comprehensive look at the empirical performance of equity premium prediction. Review of Financial Studies 21(4), 1455–1508.
  188. White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 817–838.
  189. White, H. (1996). Estimation, inference and specification analysis. Number 22. Cambridge University Press.
  190. White, H. (2000). A reality check for data snooping. Econometrica 68(5), 1097–1126.
  191. Wickham, H. (2014). Tidy data. Journal of Statistical Software 59(1), 1–23.
  192. Wilson, D. J. (2019). The harmonic mean p-value for combining dependent tests. Proceedings of the National Academy of Sciences 116(4), 1195–1200.
  193. Woolston, C. (2015). Psychology journal bans p values. Nature 519(7541), 9–9.
  194. Fundamental analysis and the cross-section of stock returns: A data-mining approach. Review of Financial Studies 30(4), 1382–1423.
  195. Zhang, X. (2015). Consistency of model averaging estimators. Economics Letters 130, 120–123.
  196. Zhang, X. and C.-A. Liu (2019). Inference after model averaging in linear regression models. Econometric Theory 35(4), 816–841.
  197. Kernel averaging estimators. Journal of Business & Economic Statistics 41(1), 157–169.
  198. Ziliak, S. and D. N. McCloskey (2008). The cult of statistical significance: How the standard error costs us jobs, justice, and lives. University of Michigan Press.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.