Physics-informed Meta-instrument for eXperiments (PiMiX) with applications to fusion energy (2401.08390v1)
Abstract: Data-driven methods (DDMs), such as deep neural networks, offer a generic approach to integrated data analysis (IDA), integrated diagnostic-to-control (IDC) workflows through data fusion (DF), which includes multi-instrument data fusion (MIDF), multi-experiment data fusion (MXDF), and simulation-experiment data fusion (SXDF). These features make DDMs attractive to nuclear fusion energy and power plant applications, leveraging accelerated workflows through machine learning and artificial intelligence. Here we describe Physics-informed Meta-instrument for eXperiments (PiMiX) that integrates X-ray (including high-energy photons such as $\gamma$-rays from nuclear fusion), neutron and others (such as proton radiography) measurements for nuclear fusion. PiMiX solves multi-domain high-dimensional optimization problems and integrates multi-modal measurements with multiphysics modeling through neural networks. Super-resolution for neutron detection and energy resolved X-ray detection have been demonstrated. Multi-modal measurements through MIDF can extract more information than individual or uni-modal measurements alone. Further optimization schemes through DF are possible towards empirical fusion scaling laws discovery and new fusion reactor designs.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.