Papers
Topics
Authors
Recent
Search
2000 character limit reached

Agile Meets Quantum: A Novel Genetic Algorithm Model for Predicting the Success of Quantum Software Development Project

Published 16 Jan 2024 in cs.SE | (2401.08151v2)

Abstract: Context: Quantum software systems represent a new realm in software engineering, utilizing quantum bits (Qubits) and quantum gates (Qgates) to solve the complex problems more efficiently than classical counterparts . Agile software development approaches are considered to address many inherent challenges in quantum software development, but their effective integration remains unexplored Objective: This study investigates key causes of challenges that could hinders the adoption of traditional agile approaches in quantum software projects and develop an Agile Quantum Software Project Success Prediction Model (AQSSPM). Methodology: Firstly, w e identified 19 causes of challenging factors discussed in our previous study, which are potentially impacting agile quantum project success. Secondly, a survey was conducted to collect expert opinions on these causes and applied Genetic Algorithm (GA) with Na i ve Bayes Classifier (NBC) and Logistic Regression (LR) to develop the AQSSPM Results: Utilizing GA with NBC, project success probability improved from 53.17% to 99.68%, with cost reductions from 0.463% to 0.403%. Similarly, GA with LR increased success rates from 55.52% to 98.99%, and costs decreased from 0.496% to 0.409% after 100 iterati ons. Both methods result showed a strong positive correlation (rs=0.955) in causes ranking, with no significant difference between them (t=1.195, p=0.240>0.05). Conclusion: The AQSSPM highlights critical focus areas for efficiently and successfully implementing agile quantum projects considering the cost factor of a particular project

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.