Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem (2401.07934v3)
Abstract: Simon's problem is to find a hidden period (a bitstring) encoded into an unknown 2-to-1 function. It is one of the earliest problems for which an exponential quantum speedup was proven for ideal, noiseless quantum computers, albeit in the oracle model. Here, using two different 127-qubit IBM Quantum superconducting processors, we demonstrate an algorithmic quantum speedup for a variant of Simon's problem where the hidden period has a restricted Hamming weight $w$. For sufficiently small values of $w$ and for circuits involving up to 58 qubits, we demonstrate an exponential speedup, albeit of a lower quality than the speedup predicted for the noiseless algorithm. The speedup exponent and the range of $w$ values for which an exponential speedup exists are significantly enhanced when the computation is protected by dynamical decoupling. Further enhancement is achieved with measurement error mitigation. This constitutes a demonstration of a bona fide quantum advantage for an Abelian hidden subgroup problem.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.