Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Embezzlement of entanglement, quantum fields, and the classification of von Neumann algebras (2401.07299v4)

Published 14 Jan 2024 in math-ph, hep-th, math.MP, math.OA, and quant-ph

Abstract: We study the quantum information theoretic task of embezzlement of entanglement in the setting of von Neumann algebras. Given a shared entangled resource state, this task asks to produce arbitrary entangled states using local operations without communication while perturbing the resource arbitrarily little. We quantify the performance of a given resource state by the worst-case error. States for which the latter vanishes are 'embezzling states' as they allow to embezzle arbitrary entangled states with arbitrarily small error. The best and worst performance among all states defines two algebraic invariants for von Neumann algebras. The first invariant takes only two values. Either it vanishes and embezzling states exist, which can only happen in type III, or no state allows for nontrivial embezzlement. In the case of factors not of finite type I, the second invariant equals the diameter of the state space. This provides a quantitative operational interpretation of Connes' classification of type III factors within quantum information theory. Type III$_1$ factors are 'universal embezzlers' where every state is embezzling. Our findings have implications for relativistic quantum field theory, where type III algebras naturally appear. For instance, they explain the maximal violation of Bell inequalities in the vacuum. Our results follow from a one-to-one correspondence between embezzling states and invariant probability measures on the flow of weights. We also establish that universally embezzling ITPFI factors are of type III$_1$ by elementary arguments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (113)
  1. “Universal entanglement transformations without communication” Publisher: American Physical Society In Physical Review A 67.6, 2003, pp. 060302 DOI: 10.1103/PhysRevA.67.060302
  2. Daniel Jonathan and Martin B. Plenio “Entanglement-Assisted Local Manipulation of Pure Quantum States” Publisher: American Physical Society In Physical Review Letters 83.17, 1999, pp. 3566–3569 DOI: 10.1103/PhysRevLett.83.3566
  3. “Catalysis of entanglement and other quantum resources”, 2022 arXiv:2207.05694
  4. Patryk Lipka-Bartosik, Henrik Wilming and Nelly H.Y. Ng “Catalysis in Quantum Information Theory”, 2023 arXiv:2306.00798
  5. “The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels” In IEEE Transactions on Information Theory 60.5 Institute of ElectricalElectronics Engineers (IEEE), 2014, pp. 2926–2959 DOI: 10.1109/tit.2014.2309968
  6. Mario Berta, Matthias Christandl and Renato Renner “The Quantum Reverse Shannon Theorem based on One-Shot Information Theory” In Communications in Mathematical Physics 306.3, 2011, pp. 579–615 DOI: 10.1007/s00220-011-1309-7
  7. Debbie Leung, Ben Toner and John Watrous “Coherent state exchange in multi-prover quantum interactive proof systems” In Chicago Journal of Theoretical Computer Science 11.2013, 2013, pp. 1 DOI: 10.4086/cjtcs.2013.011
  8. “Quantum XOR Games” ISSN: 1093-0159 In 2013 IEEE Conference on Computational Complexity, 2013, pp. 144–155 DOI: 10.1109/CCC.2013.23
  9. Richard Cleve, Li Liu and Vern I. Paulsen “Perfect Embezzlement of Entanglement” In Journal of Mathematical Physics 58.1, 2017, pp. 012204 DOI: 10.1063/1.4974818
  10. Andrea Coladangelo “A two-player dimension witness based on embezzlement, and an elementary proof of the non-closure of the set of quantum correlations” In Quantum 4, 2020, pp. 282 DOI: 10.22331/q-2020-06-18-282
  11. “Characteristics of universal embezzling families” In Physical Review A 90.4, 2014, pp. 042331 DOI: 10.1103/PhysRevA.90.042331
  12. Elia Zanoni, Thomas Theurer and Gilad Gour “Complete Characterization of Entanglement Embezzlement” arXiv, 2023 DOI: 10.48550/arXiv.2303.17749
  13. Boris Tsirelson “Problem 33: Bell inequalities and operator algebras” This was posted by Tsirelson on the Braunschweig list of open problems in Quantum Information Theory. The list is currently maintained by the IQOQI Vienna. https://oqp.iqoqi.oeaw.ac.at., 2006
  14. “MIP*=RE”, 2020 arXiv:2001.04383
  15. Isaac Goldbring “The Connes embedding problem: A guided tour” In Bulletin of the American Mathematical Society 59.4, 2022, pp. 503–560 DOI: 10.1090/bull/1768
  16. Alain Connes “Une classification des facteurs de type IIIIII{\rm III}roman_III” In Annales scientifiques de l’École normale supérieure 6.2 Societe Mathematique de France, 1973, pp. 133–252 DOI: 10.24033/asens.1247
  17. “Embezzling entanglement from quantum fields” In preparation, 2024
  18. Rudolf Haag “Local Quantum Physics” Berlin, Heidelberg: Springer, 1996 DOI: 10.1007/978-3-642-61458-3
  19. “The Schmidt rank for the commuting operator framework” arXiv, 2023 arXiv: http://arxiv.org/abs/2307.11619
  20. M.A. Nielsen “Conditions for a Class of Entanglement Transformations” In Physical Review Letters 83.2, 1999, pp. 436–439 DOI: 10.1103/PhysRevLett.83.436
  21. Rajendra Bhatia “Matrix Analysis” 169, Graduate Texts in Mathematics New York, NY: Springer, 1997 DOI: 10.1007/978-1-4612-0653-8
  22. Masamichi Takesaki “Theory of Operator Algebras II” 125, Encyclopaedia of Mathematical Sciences Berlin, Heidelberg: Springer, 2003 DOI: 10.1007/978-3-662-10451-4
  23. “Equivalence of normal states on von Neumann algebras and the flow of weights” In Advances in Mathematics 83.2, 1990, pp. 180–262 DOI: 10.1016/0001-8708(90)90078-2
  24. Alain Connes, Uffe Haagerup and Erling Størmer “Diameters of state spaces of type III factors” In Operator Algebras and their Connections with Topology and Ergodic Theory 1132, Lecture Notes in Mathematics Springer-Verlag Berlin Heidelberg, 1985, pp. 91–116 DOI: 10.1007/bfb0074881
  25. “Classification of hyperfinite factors up to completely bounded isomorphism of their preduals” Publisher: De Gruyter Section: Journal für die reine und angewandte Mathematik, 2009, pp. 141–176 DOI: 10.1515/CRELLE.2009.037
  26. “A classification of factors” In Publications of the Research Institute for Mathematical Sciences 4.1, 1968, pp. 51–130 DOI: 10.2977/prims/1195195263
  27. Robert T. Powers “Representations of Uniformly Hyperfinite Algebras and Their Associated von Neumann Rings” In Annals of Mathematics 86.1, 1967, pp. 138–171 DOI: 10.2307/1970364
  28. Alain Connes “Classification of Injective Factors Cases II11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT , II∞{}_{\infty}start_FLOATSUBSCRIPT ∞ end_FLOATSUBSCRIPT, IIIλ𝜆{}_{\lambda}start_FLOATSUBSCRIPT italic_λ end_FLOATSUBSCRIPT , λ≠1𝜆1\lambda\neq 1italic_λ ≠ 1” In The Annals of Mathematics 104.1 JSTOR, 1976, pp. 73–115 DOI: 10.2307/1971057
  29. Uffe Haagerup “Connes’ bicentralizer problem and uniqueness of the injective factor of type III11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT” In Acta Mathematica 158.1, 1987, pp. 95–148 DOI: 10.1007/bf02392257
  30. “Homogeneity of the state space of factors of type III11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT” In Journal of Functional Analysis 28.2, 1978, pp. 187–196 DOI: 10.1016/0022-1236(78)90085-X
  31. Stephen J. Summers and Reinhard Werner “The vacuum violates Bell’s inequalities” In Physics Letters A 110.5, 1985, pp. 257–259 DOI: 10.1016/0375-9601(85)90093-3
  32. Christopher J. Fewster and Rainer Verch “Quantum Fields and Local Measurements” In Communications in Mathematical Physics 378.2 Springer ScienceBusiness Media LLC, 2020, pp. 851–889 DOI: 10.1007/s00220-020-03800-6
  33. Detlev Buchholz, Sergio Doplicher and Roberto Longo “On Noether’s theorem in quantum field theory” In Annals of Physics 170.1 Elsevier BV, 1986, pp. 1–17 DOI: 10.1016/0003-4916(86)90086-2
  34. Reinhard Werner “Local preparability of states and the split property in quantum field theory” In Letters in Mathematical Physics 13.4 Springer ScienceBusiness Media LLC, 1987, pp. 325–29 DOI: 10.1007/bf00401161
  35. Stephen J. Summers “On The Independence Of Local Algebras In Quantum Field Theory” In Reviews in Mathematical Physics 02.02 World Scientific Pub Co Pte Lt, 1990, pp. 201–247 DOI: 10.1142/s0129055x90000090
  36. “Consistent embezzling families” In preparation, 2024
  37. “Operator-Algebraic Renormalization and Wavelets” In Physical Review Letters 127.23 American Physical Society (APS), 2021, pp. 230601 DOI: 10.1103/physrevlett.127.230601
  38. “Scaling Limits of Lattice Quantum Fields by Wavelets” In Communications in Mathematical Physics 387.1 Springer ScienceBusiness Media LLC, 2021, pp. 299–360 DOI: 10.1007/s00220-021-04152-5
  39. Tobias J. Osborne and Alexander Stottmeister “Conformal Field Theory from Lattice Fermions” In Communications in Mathematical Physics 398.1 Springer ScienceBusiness Media LLC, 2023, pp. 219–289 DOI: 10.1007/s00220-022-04521-8
  40. Sabine Hossenfelder “Minimal Length Scale Scenarios for Quantum Gravity” In Living Reviews in Relativity 16.1, 2013, pp. 2 DOI: 10.12942/lrr-2013-2
  41. E. Witten “Gravity and the crossed product” In Journal of High Energy Physics 2022.10, 2022, pp. 1–28 DOI: 10.1007/JHEP10(2022)008
  42. “An algebra of observables for de Sitter space” In Journal of High Energy Physics 2023.2 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1007/jhep02(2023)082
  43. “A note on continuous entropy”, 2022 arXiv:2202.03357
  44. Venkatesa Chandrasekaran, Geoff Penington and Edward Witten “Large N algebras and generalized entropy” In Journal of High Energy Physics 2023.4 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1007/jhep04(2023)009
  45. “Quantum Communication with Zero-Capacity Channels” Publisher: American Association for the Advancement of Science In Science 321.5897, 2008, pp. 1812–1815 DOI: 10.1126/science.1162242
  46. M.B. Hastings “Superadditivity of communication capacity using entangled inputs” Number: 4 Publisher: Nature Publishing Group In Nature Physics 5.4, 2009, pp. 255–257 DOI: 10.1038/nphys1224
  47. Peter W. Shor “Equivalence of Additivity Questions in Quantum Information Theory” In Communications in Mathematical Physics 246.3, 2004, pp. 453–472 DOI: 10.1007/s00220-003-0981-7
  48. Ola Bratteli and Derek W. Robinson “Operator Algebras and Quantum Statistical Mechanics 1: C*superscript𝐶{C}^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-and W*superscript𝑊{W}^{*}italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-Algebras, Symmetry Groups, Decomposition of States”, Theoretical and Mathematical Physics Springer Berlin, Heidelberg, 1987 DOI: 10.1007/978-3-662-02520-8
  49. “Theory of Operator Algebras I” New York, NY: Springer, 1979 DOI: 10.1007/978-1-4612-6188-9
  50. Masamichi Takesaki “Theory of Operator Algebras III” 127, Encyclopaedia of Mathematical Sciences Berlin, Heidelberg: Springer, 2003 DOI: 10.1007/978-3-662-10453-8
  51. Bruce Blackadar “Operator Algebras” 122, Encyclopaedia of Mathematical Sciences Berlin, Heidelberg: Springer, 2006 DOI: 10.1007/3-540-28517-2
  52. Uffe Haagerup “The Standard Form of Von Neumann Algebras” Publisher: Mathematica Scandinavica In Mathematica Scandinavica 37.2, 1975, pp. 271–283 DOI: 10.7146/math.scand.a-11606
  53. “Ultraproducts of von Neumann algebras” In Journal of Functional Analysis 266.12, 2014, pp. 6842–6913 DOI: 10.1016/j.jfa.2014.03.013
  54. Alfons Daele “Continuous Crossed Products and Type III Von Neumann Algebras” 31, London Mathematical Society Lecture Note Series Cambridge University Press, 1978 DOI: 10.1017/cbo9780511662393
  55. Dana P. Williams “Crossed products of C*-algebras”, Mathematical surveys and monographs volume 134 Providence (R.I.): American mathematical society, 2007 DOI: 10.1090/surv/134
  56. “Generalized s-numbers of τ𝜏\tauitalic_τ-measurable operators” In Pacific Journal of Mathematics 123.2 Mathematical Sciences Publishers, 1986, pp. 269–300 DOI: 10.2140/pjm.1986.123.269
  57. Dénes Petz “Spectral scale of self-adjoint operators and trace inequalities” In Journal of Mathematical Analysis and Applications 109.1, 1985, pp. 74–82 DOI: 10.1016/0022-247X(85)90176-3
  58. “Closed Convex Hulls of Unitary Orbits in von Neumann Algebras” Publisher: American Mathematical Society In Transactions of the American Mathematical Society 323.1, 1991, pp. 1–38 DOI: 10.2307/2001613
  59. “Distance between unitary orbits in von Neumann algebras.” In Pacific Journal of Mathematics 38.2 Mathematical Sciences Publishers, 1989, pp. 259–294 DOI: 10.2140/pjm.1989.138.259
  60. Richard V. Kadison and Gert K. Pedersen “Means and convex combinations of unitary operators.” In Mathematica Scandinavica 57.2, 1985, pp. 249–266 DOI: 10.7146/math.scand.a-12116
  61. Richard V. Kadison and John R. Ringrose “Fundamentals of the Theory of Operator Algebras, vol I” Boston, MA: Birkhäuser, 1992 DOI: 10.1007/978-1-4612-2968-1
  62. Serban Valentin Strătilă “Modular Theory in Operator Algebras” Cambridge University Press, 2020 DOI: 10.1017/9781108489607
  63. Uffe Haagerup “The injective factors of type IIIλsubscriptIII𝜆\rm{III}_{\lambda}roman_III start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT, 0<λ<10𝜆10<\lambda<10 < italic_λ < 1” Publisher: Mathematical Sciences Publishers In Pacific Journal of Mathematics 137.2, 1989, pp. 265–310 DOI: 10.2140/pjm.1989.137.265
  64. “The equivalence of various definitions for a properly infinite von Neumann algebra to be approximately finite dimensional” In Proceedings of The American Mathematical Society 60.1, 1976, pp. 175–175 DOI: 10.1090/s0002-9939-1976-0512370-0
  65. “A Construction of Approximately Finite-Dimensional Non-ITPFI Factors” In Canadian Mathematical Bulletin 23.2 Canadian Mathematical Society, 1980, pp. 227–230 DOI: 10.4153/cmb-1980-030-5
  66. “Approximately transitive flows and ITPFI factors” In Ergodic Theory and Dynamical Systems 5.2 Cambridge University Press (CUP), 1985, pp. 203–236 DOI: 10.1017/s0143385700002868
  67. Ola Bratteli and Derek W. Robinson “Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States, Models in Quantum Statistical Mechanics”, Theoretical and Mathematical Physics Springer Berlin, Heidelberg, 1997 DOI: 10.1007/978-3-662-03444-6
  68. D. Buchholz, C. D’Antoni and K. Fredenhagen “The universal structure of local algebras” Publisher: Springer In Communications in Mathematical Physics 111.1, 1987, pp. 123–135 DOI: 10.1007/BF01239019
  69. Jakob Yngvason “The Role of Type III Factors in Quantum Field Theory” In Reports on Mathematical Physics 55.1, 2005, pp. 135–147 DOI: 10.1016/S0034-4877(05)80009-6
  70. John Neumann “On infinite direct products” In Compositio Mathematica 6.1, 1939, pp. 1–77 URL: http://www.numdam.org/item/CM_1939__6__1_0
  71. Erling Størmer “Hyperfinite product factors” In Arkiv för Matematik 9.1-2 International Press of Boston, 1971, pp. 165–170 DOI: 10.1007/bf02383642
  72. Edward G. Effros and E.Christopher Lance “Tensor products of operator algebras” In Advances in Mathematics 25.1 Elsevier BV, 1977, pp. 1–34 DOI: 10.1016/0001-8708(77)90085-8
  73. Richard V. Kadison and John R. Ringrose “Fundamentals of the Theory of Operator Algebras, vol II” Boston, MA: Birkhäuser, 1992 DOI: 10.1007/978-1-4612-2968-1
  74. “Complete Boolean algebras of type I factors” In Publications of the Research Institute for Mathematical Sciences 2.2 European Mathematical Society - EMS - Publishing House GmbH, 1966, pp. 157–242 DOI: 10.2977/prims/1195195888
  75. “Entanglement Measures and Their Properties in Quantum Field Theory”, SpringerBriefs in Mathematical Physics Springer, Cham, 2018 DOI: 10.1007/978-3-319-94902-4
  76. Stephen J. Summers “Deep Beauty. Understanding the Quantum World through Mathematical Innovation” Cambridge University Press, 2011, pp. 317–342 DOI: 10.1017/cbo9780511976971.009
  77. H.J. Borchers “On revolutionizing quantum field theory with Tomita’s modular theory” In Journal of Mathematical Physics 41.6 AIP Publishing, 2000, pp. 3604–3673 DOI: 10.1063/1.533323
  78. Hans-Jürgen Borchers “Modular Groups in Quantum Field Theory” In Quantum Field Theory: Proceedings of the Ringberg Workshop Held at Tegernsee, Germany, 21–24 June 1998 On the Occasion of Wolfhart Zimmermann’s 70th Birthday 558, Lecture Notes in Physics Springer Berlin Heidelberg, 2000, pp. 26–42 DOI: 10.1007/3-540-44482-3_3
  79. Joseph J. Bisognano and Eyvind H. Wichmann “On the duality condition for quantum fields” In Journal of Mathematical Physics 17.3 AIP Publishing, 1976, pp. 303 DOI: 10.1063/1.522898
  80. Roberto Longo “Operator Algebras and Applications, Part 2” 38.2, Proceedings of Symposia in Pure Mathematics American Mathematical Society, 1982, pp. 551–566 DOI: 10.1090/pspum/038.2/679537
  81. Detlev Buchholz and Eyvind H. Wichmann “Causal independence and the energy-level density of states in local quantum field theory” In Communications in Mathematical Physics 106.2 Springer ScienceBusiness Media LLC, 1986, pp. 321–344 DOI: 10.1007/bf01454978
  82. Detlev Buchholz, Claudio D’Antoni and Roberto Longo “Nuclear maps and modular structures. I. General properties” In Journal of Functional Analysis 88.2 Elsevier BV, 1990, pp. 233–250 DOI: 10.1016/0022-1236(90)90104-s
  83. Detlev Buchholz, Claudio D’Antoni and Roberto Longo “Nuclear maps and modular structures II: Applications to quantum field theory” In Communications in Mathematical Physics 129.1 Springer ScienceBusiness Media LLC, 1990, pp. 115–138 DOI: 10.1007/bf02096782
  84. R. Brunetti, D. Guido and R. Longo “Modular Localization And Wigner Particles” In Reviews in Mathematical Physics 14.07n08 World Scientific Pub Co Pte Lt, 2002, pp. 759–785 DOI: 10.1142/s0129055x02001387
  85. “Covariant Homogeneous Nets of Standard Subspaces” In Communications in Mathematical Physics 386.1 Springer ScienceBusiness Media LLC, 2021, pp. 305–358 DOI: 10.1007/s00220-021-04046-6
  86. “Nets of standard subspaces on Lie groups” In Advances in Mathematics 384 Elsevier BV, 2021, pp. 107715 DOI: 10.1016/j.aim.2021.107715
  87. Hellmut Baumgärtel “Operatoralgebraic methods in quantum field theory. A series of lectures” Akademie Verlag Berlin, 1995 URL: https://d-nb.info/944844677
  88. Hans Halvorson “Philosophy of Physics” Elsevier, 2007, pp. 731–864 DOI: 10.1016/b978-044451560-5/50011-7
  89. Detlev Buchholz “Current Trends in Axiomatic Quantum Field ” In Quantum Field Theory: Proceedings of the Ringberg Workshop Held at Tegernsee, Germany, 21–24 June 1998 On the Occasion of Wolfhart Zimmermann’s 70th Birthday 558, Lecture Notes in Physics Springer Berlin Heidelberg, 2000, pp. 43–64 DOI: 10.1007/3-540-44482-3
  90. Mihály Weiner “An Algebraic Version of Haag’s Theorem” In Communications in Mathematical Physics 305.2 Springer ScienceBusiness Media LLC, 2011, pp. 469–485 DOI: 10.1007/s00220-011-1236-7
  91. Daniel Kastler “The Algebraic Theory of Superselection Sectors” In Proceedings of the Convegno Internationale “Algebraic Theory of Superselection Sectors and Field Theory” World Scientific, 1990 DOI: 10.1142/9789814540476
  92. Richard V. Kadison “Remarks on the Type of Von Neumann Algebras of Local Observables in Quantum Field Theory” In Journal of Mathematical Physics 4.12 AIP Publishing, 1963, pp. 1511–1516 DOI: 10.1063/1.1703932
  93. H.J. Borchers “A remark on a theorem of B. Misra” In Communications in Mathematical Physics 4.5 Springer ScienceBusiness Media LLC, 1967, pp. 315–323 DOI: 10.1007/bf01653645
  94. Huzihiro Araki “Type of von Neumann Algebra Associated with Free Field” In Progress of Theoretical Physics 32.6 Oxford University Press (OUP), 1964, pp. 956–965 DOI: 10.1143/ptp.32.956
  95. Huzihiro Araki “Von Neumann Algebras of Local Observables for Free Scalar Field” In Journal of Mathematical Physics 5.1 AIP Publishing, 1964, pp. 1–13 DOI: 10.1063/1.1704063
  96. G.F. Dell’Antonio “Structure of the algebras of some free systems” In Communications in Mathematical Physics 9.2 Springer ScienceBusiness Media LLC, 1968, pp. 81–117 DOI: 10.1007/bf01645837
  97. “Quantum Field Theory and Statistical Mechanics: Expositions” Birkhäuser Basel, 1985 DOI: 10.1007/978-1-4612-5158-3
  98. W. Driessler “On the type of local algebras in quantum field theory” In Communications in Mathematical Physics 53.3 Springer ScienceBusiness Media LLC, 1977, pp. 295–297 DOI: 10.1007/bf01609853
  99. “Scaling Algebras and Renormalization Group in Algebraic Quantum Field Theory” In Reviews in Mathematical Physics 7.8, 1995, pp. 1195–1239 DOI: 10.1142/s0129055x9500044x
  100. Joseph J. Bisognano and Eyvind H. Wichmann “On the duality condition for a Hermitian scalar field” In Journal of Mathematical Physics 16.4 American Institute of Physics, 1975, pp. 985–1007 DOI: 10.1063/1.522605
  101. W. Driessler “Comments on lightlike translations and applications in relativistic quantum field theory” In Communications in Mathematical Physics 44.2 Springer ScienceBusiness Media LLC, 1975, pp. 133–141 DOI: 10.1007/bf01608826
  102. Roberto Longo “Notes on algebraic invariants for non-commutative dynamical systems” In Communications in Mathematical Physics 69.3 Springer ScienceBusiness Media LLC, 1979, pp. 195–207 DOI: 10.1007/bf01197443
  103. Detlev Buchholz “On the Structure of Local Quantum Fields with Nontrivial Interaction” In Proceedings of the International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics: Leipzig, September 12.-20., 1977, 1977, pp. 146–153
  104. “Total sets in quantum field theory” In Reports on Mathematical Physics 2.2 Elsevier BV, 1971, pp. 113–120 DOI: 10.1016/0034-4877(71)90024-3
  105. “Standard and split inclusions of von Neumann algebras” In Inventiones Mathematicae 75.3 Springer ScienceBusiness Media LLC, 1984, pp. 493–536 DOI: 10.1007/bf01388641
  106. R. Brunetti, D. Guido and R. Longo “Modular structure and duality in conformal quantum field theory” In Communications in Mathematical Physics 156.1 Springer ScienceBusiness Media LLC, 1993, pp. 201–219 DOI: 10.1007/bf02096738
  107. “Operator algebras and conformal field theory” In Communications in Mathematical Physics 155.3 Springer ScienceBusiness Media LLC, 1993, pp. 569–640 DOI: 10.1007/bf02096729
  108. “A C*-algebraic Approach to Interacting Quantum Field Theories” In Communications in Mathematical Physics 377.2 Springer ScienceBusiness Media LLC, 2020, pp. 947–969 DOI: 10.1007/s00220-020-03700-9
  109. “The Quantum Sine-Gordon Model in Perturbative AQFT” In Communications in Mathematical Physics 357.1 Springer ScienceBusiness Media LLC, 2018, pp. 421–446 DOI: 10.1007/s00220-017-2944-4
  110. Dorothea Bahns, Klaus Fredenhagen and Kasia Rejzner “Local Nets of Von Neumann Algebras in the Sine–Gordon Model” In Communications in Mathematical Physics 383.1 Springer ScienceBusiness Media LLC, 2021, pp. 1–33 DOI: 10.1007/s00220-021-03961-y
  111. Dorothea Bahns, Nicola Pinamonti and Kasia Rejzner “Equilibrium states for the massive Sine-Gordon theory in the Lorentzian signature” In Journal of Mathematical Analysis and Applications 526.2 Elsevier BV, 2023, pp. 127249 DOI: 10.1016/j.jmaa.2023.127249
  112. “Proposed Experiment to Test Local Hidden-Variable Theories” Publisher: American Physical Society In Physical Review Letters 23.15, 1969, pp. 880–884 DOI: 10.1103/PhysRevLett.23.880
  113. Stephen J. Summers and Reinhard Werner “Maximal violation of Bell’s inequalities is generic in quantum field theory” In Communications in Mathematical Physics 110.2 Springer ScienceBusiness Media LLC, 1987, pp. 247–259 DOI: 10.1007/bf01207366
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 13 likes.

Reddit Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube