Extracting the speed of sound in quark-gluon plasma with ultrarelativistic lead-lead collisions at the LHC (2401.06896v3)
Abstract: Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb${-1}$. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of 0.241 $\pm$ 0.002 (stat) $\pm$ 0.016 (syst) in natural units. The effective medium temperature, estimated using the mean transverse momentum, is 219 $\pm$ 8 (syst) MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions.
- E. V. Shuryak, “Theory of hadronic plasma”, Sov. Phys. JETP 47 (1978) 212.
- J. C. Collins and M. J. Perry, “Superdense matter: neutrons or asymptotically free quarks?”, Phys. Rev. Lett. 34 (1975) 1353, 10.1103/PhysRevLett.34.1353.
- N. Cabibbo and G. Parisi, “Exponential hadronic spectrum and quark liberation”, Phys. Lett. B 59 (1975) 67, 10.1016/0370-2693(75)90158-6.
- B. A. Freedman and L. D. McLerran, “Fermions and gauge vector mesons at finite temperature and density. 3. the ground state energy of a relativistic quark gas”, Phys. Rev. D 16 (1977) 1169, 10.1103/PhysRevD.16.1169.
- R. C. Hwa and X. N. Wang, eds., “Quark-gluon plasma 3”. World Scientific, Singapore, 2004. 10.1142/5029, ISBN 978-981-238-077-7, 978-981-4488-08-2.
- HotQCD Collaboration, “Equation of state in (2+1)-flavor QCD”, Phys. Rev. D 90 (2014) 094503, 10.1103/PhysRevD.90.094503, arXiv:1407.6387.
- STAR Collaboration, “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102, 10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.
- PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184, 10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.
- BRAHMS Collaboration, “Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1, 10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.
- PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28, 10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.
- U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123, 10.1146/annurev-nucl-102212-170540, arXiv:1301.2826.
- J. Joseph et al., “Measurement of sound velocity in a Fermi gas near a Feshbach resonance”, Phys. Rev. Lett. 98 (2007) 170401, 10.1103/PhysRevLett.98.170401.
- P. B. Patel et al., “Universal sound diffusion in a strongly interacting Fermi gas”, Science 370 (2020) 1222, 10.1126/science.aaz5756, arXiv:1909.02555.
- R. Campanini and G. Ferri, “Experimental equation of state in proton-proton and proton-antiproton collisions and phase transition to quark gluon plasma”, Phys. Lett. B 703 (2011) 237, 10.1016/j.physletb.2011.08.009, arXiv:1106.2008.
- F. G. Gardim, G. Giacalone, M. Luzum, and J.-Y. Ollitrault, “Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions”, Nature Phys. 16 (2020) 615, 10.1038/s41567-020-0846-4, arXiv:1908.09728.
- F. G. Gardim, G. Giacalone, and J.-Y. Ollitrault, “The mean transverse momentum of ultracentral heavy-ion collisions: A new probe of hydrodynamics”, Phys. Lett. B 809 (2020) 135749, 10.1016/j.physletb.2020.135749, arXiv:1909.11609.
- A. Sorensen, D. Oliinychenko, V. Koch, and L. McLerran, “Speed of sound and baryon cumulants in heavy-ion collisions”, Phys. Rev. Lett. 127 (2021) 042303, 10.1103/PhysRevLett.127.042303, arXiv:2103.07365.
- G. Nijs and W. van der Schee, “Predictions and postdictions for relativistic lead and oxygen collisions with the computational simulation code Trajectum”, Phys. Rev. C 106 (2022) 044903, 10.1103/PhysRevC.106.044903, arXiv:2110.13153.
- CMS Collaboration, “HEPData record for this analysis”, 2023. 10.17182/hepdata.146016.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13\TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13\TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- G. Bayatian et al., “Design, performance and calibration of the CMS forward calorimeter wedges”, Eur. Phys. J. C 53 (2008) 139, 10.1140/epjc/s10052-007-0459-4.
- O. Surányi et al., “Performance of the CMS zero degree calorimeters in pPb collisions at the LHC”, JINST 16 (2021) P05008, 10.1088/1748-0221/16/05/P05008, arXiv:2102.06640.
- CMS Collaboration, “Charged-particle nuclear modification factors in PbPb and pPb collisions at \sqrtsNN=5.02\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, JHEP 04 (2017) 039, 10.1007/JHEP04(2017)039, arXiv:1611.01664.
- CMS Collaboration, “Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at \sqrtsNN=2.76\TeV\sqrtsNN2.76\TeV\sqrtsNN=2.76\TeV= 2.76”, JHEP 02 (2014) 088, 10.1007/JHEP02(2014)088, arXiv:1312.1845.
- CMS Collaboration, “Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at \sqrtsNN=2.76\sqrtsNN2.76\sqrtsNN=2.76= 2.76 and 5.02\TeV”, Eur. Phys. J. C 80 (2020) 534, 10.1140/epjc/s10052-020-7834-9, arXiv:1910.08789.
- I. P. Lokhtin et al., “Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)”, Comput. Phys. Commun. 180 (2009) 779, 10.1016/j.cpc.2008.11.015, arXiv:0809.2708.
- GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- R. Hagedorn, “Multiplicities, \ptdistributions and the expected hadron to quark-gluon phase transition”, Riv. Nuovo Cim. 6N10 (1983) 1, 10.1007/BF02740917.
- ALICE Collaboration, “Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at \sqrtsNN=5.44\TeV\sqrtsNN5.44\TeV\sqrtsNN=5.44\TeV= 5.44”, Phys. Lett. B 788 (2019) 166, 10.1016/j.physletb.2018.10.052, arXiv:1805.04399.
- ALICE Collaboration, “Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at \sqrtsNN=5.02\TeV\sqrtsNN5.02\TeV\sqrtsNN=5.02\TeV= 5.02”, Phys. Rev. Lett. 116 (2016) 222302, 10.1103/PhysRevLett.116.222302, arXiv:1512.06104.
- S. J. Das, G. Giacalone, P.-A. Monard, and J.-Y. Ollitrault, “Relating centrality to impact parameter in nucleus-nucleus collisions”, Phys. Rev. C 97 (2018) 014905, 10.1103/PhysRevC.97.014905, arXiv:1708.00081.
- G. Giacalone, G. Nijs, and W. van der Schee, “Determination of the neutron skin of Pb208 from ultrarelativistic nuclear collisions”, Phys. Rev. Lett. 131 (2023) 202302, 10.1103/PhysRevLett.131.202302, arXiv:2305.00015.
- G. Nijs and W. van der Schee, “Ultracentral heavy ion collisions, transverse momentum and the equation of state”, 2023. arXiv:2312.04623.
- S. Borsanyi et al., “The QCD equation of state with dynamical quarks”, JHEP 11 (2010) 077, 10.1007/JHEP11(2010)077, arXiv:1007.2580.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.