Papers
Topics
Authors
Recent
2000 character limit reached

Near-resonant light scattering by an atom in a state-dependent trap (2401.06753v1)

Published 12 Jan 2024 in quant-ph

Abstract: The optical properties of a fixed atom are well-known and investigated. For example, the extraordinarily large cross section of a single atom as seen by a resonant photon is essential for quantum optical applications. Mechanical effects associated with light scattering are also well-studied, forming the basis of laser cooling and trapping, for example. Despite this, there is one fundamental problem that surprisingly has not been extensively studied, yet is relevant to a number of emerging quantum optics experiments. In these experiments, the ground state of the atom experiences a tight optical trap formed by far-off-resonant light, to facilitate efficient interactions with near-resonant light. However, the excited state might experience a different potential, or even be anti-trapped. Here, we systematically analyze the effects of unequal trapping on near-resonant atom-light interactions. In particular, we identify regimes where such trapping can lead to significant excess heating, and a reduction of total and elastic scattering cross sections associated with a decreased atom-photon interaction efficiency. Understanding these effects can be valuable for optimizing quantum optics platforms where efficient atom-light interactions on resonance are desired, but achieving equal trapping is not feasible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. H. J. Metcalf and P. van der Straten, Journal of the Optical Society of America B 20, 887 (2003).
  2. Immanuel B., Nature Physics 1, 23 (2005).
  3. A. M. Kaufman and K.-K. Ni, Nature Physics 17, 1324 (2021).
  4. A. Derevianko and H. Katori, Reviews of Modern Physics 83, 331 (2011).
  5. A. Reiserer and G. Rempe, Reviews of Modern Physics 87, 1379 (2015).
  6. J. Dalibard and C. Cohen-Tannoudji, Journal Optical Society of America B 6, 2023 (1989).
  7. C. Cohen Tannoudji and D. Guéry-Odelin, in Advances in Atomic Physics, an Overview (World Scientific Publishing, 2011) pp. 263–267.
  8. D. Leibfried and R. Blatt, Reviews of Modern Physics 75 (2003), 10.1103/RevModPhys.75.281.
  9. D. A. Steck, Quantum and Atom Optics (University of Oregon, 2014).
  10. L. M. Duan and H. J. Kimble, Physical Review Letters 92, 127902 (2004).
  11. Gardiner Crispin and Zoller Peter, The Quantum World of Ultra-Cold Atoms and Light, Vol. 3 (World Scientific, 2017).
  12. S. Stenholm, Reviews of Modern Physics 58, 699 (1986).
  13. D. J. Wineland and W. M. Itano, Physical Review A 20, 1521 (1979).
  14. P. R. Berman, Introductory Quantum Mechanics: A Traditional Approach Emphasizing Connections with Classical Physics (Springer, 2018).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: