Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A study of the Wamsley group and its Sylow subgroups (2401.06585v1)

Published 12 Jan 2024 in math.GR

Abstract: We study the Wamsley group $\langle X,Y,Z\,|\, XZ=X\alpha, {}Z Y=Y\beta, Z\gamma=[X,Y]\rangle$ and its Sylow subgroups, where $\alpha\gamma\neq 1\neq \beta\gamma$ and $\gamma>0$, obtaining the sharpest results when $\alpha=\beta$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. M. A. Albar On Mennicke groups of deficiency zero I, Internati. J. Math. &\&& Math. Sci. 8 (1985) 821–824.
  2. M. A. Albar and A.-A. A. Al-Shuaibi On Mennicke groups of deficiency zero II, Can. Math. Bull. 34 (1991) 289–293.
  3. D. Allcock Triangles of Baumslag-Solitar groups, Can. J. Math. 64 (2012) 241–253.
  4. H. Abdolzadeh and R. Sabzchi An infinite family of finite 2-groups with deficiency zero, Int. J. Group Theory 6 (2017) 45–49.
  5. A. Cant and B. Eick Polynomials describing the multiplication in finitely generated torsion-free nilpotent groups, J. Symbolic Comput. 92 (2019) 203–210.
  6. E. Jabara Gruppi fattorizzati da sottogruppi ciclici, Rend. Semin. Mat. Univ. Padova 122 (2009) 65–84.
  7. A.-R. Jamali A new class of finite groups with three generators and three relations, Algebra Colloq. 5 (1998) 465–469.
  8. I.D Macdonald On a class of finitely presented groups, Canad. J. Math 14 (1962) 602–613.
  9. J. Mennicke Einige endliche Gruppen mit drei Erzeugenden und drei Relationen, Arch. Math. (Basel) 10 (1959) 409–418.
  10. A. Montoya Ocampo and F. Szechtman The automorphism group of finite 2222-groups associated to the Macdonald group, arXiv:2308.03510.
  11. M. J. Post Finite three-generator groups with zero deficiency, Commun. Algebra 6 (1978) 1289–1296.
  12. E. F. Robertson A comment on finite nilpotent groups of deficiency zero, Can. Math. Bull. 23 (1980) 313–316.
  13. E. Schenkman A factorization theorem for groups and Lie algebras, Proc. Am. Math. Soc. 68 (1978) 149–152.
  14. F. Szechtman Nilpotency of the Macdonald group, preprint.
  15. J.W. Wamsley A class of two generator two relation finite groups, J. Aust. Math. Soc. 14 (1972) 38–40
  16. J.W. Wamsley Some finite groups with zero deficiency, J. Aust. Math. Soc. 18 (1974) 73–75.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: