Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Distribution Function of Relaxation Times with the Davidson-Cole Model as a Kernel (2401.06490v1)

Published 12 Jan 2024 in physics.chem-ph, cond-mat.dis-nn, math-ph, math.MP, and physics.app-ph

Abstract: In this paper we propose a generalized distribution function of relaxation times (DFRT) considering the Davidson-Cole model as an elementary process instead of the standard Debye model. The distribution function is retrieved from the inverse of the generalized Stieltjes transform expressed in terms of iterated Laplace transforms. We derive computable analytical expressions of the generalized DFRT for some of the most known normalized impedance (or admittance) models including the constant phase element, the Davidson-Cole, Havriliak-Negami and the Kohlrausch-Williams-Watts models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. N. Florsch, C. Camerlynck, and A. Revil, ‘‘Direct estimation of the distribution of relaxation times from induced-polarization spectra using a fourier transform analysis,” Near Surf. Geophys. 10, 517–531 (2012).
  2. F. Ciucci and C. Chen, “Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: A bayesian and hierarchical bayesian approach,” Electrochim. Acta 167, 439–454 (2015).
  3. H. Schichlein, A. C. Müller, M. Voigts, A. Krügel, and E. Ivers-Tiffée, “Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells,” J. Appl. Electrochem. 32, 875–882 (2002).
  4. B. A. Boukamp, “Fourier transform distribution function of relaxation times; application and limitations,” Electrochim. Acta 154, 35–46 (2015).
  5. A. Gavrilyuk, D. Osinkin, and D. Bronin, “The use of tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy,” Russ. J. Electrochem. 53, 575–588 (2017).
  6. T. Paul, P. Chi, P. M. Wu, and M. Wu, “Computation of distribution of relaxation times by tikhonov regularization for li ion batteries: usage of l-curve method,” Sci. Rep. 11, 12624 (2021).
  7. S. Shanbhag, “Relaxation spectra using nonlinear tikhonov regularization with a bayesian criterion,” Rheol. Acta 59, 509–520 (2020).
  8. T. Hörlin, “Deconvolution and maximum entropy in impedance spectroscopy of noninductive systems,” Solid State Ionics 107, 241–253 (1998).
  9. T. Hörlin, “Maximum entropy in impedance spectroscopy of non-inductive systems,” Solid State Ionics 67, 85–96 (1993).
  10. A. Tesler, D. Lewin, S. Baltianski, and Y. Tsur, “Analyzing results of impedance spectroscopy using novel evolutionary programming techniques,” J. Electroceram. 24, 245–260 (2010).
  11. B. A. Boukamp, “Distribution (function) of relaxation times, successor to complex nonlinear least squares analysis of electrochemical impedance spectroscopy?” J. Phys.: Energy 2, 042001 (2020).
  12. S. Effendy, J. Song, and M. Z. Bazant, “Analysis, design, and generalization of electrochemical impedance spectroscopy (eis) inversion algorithms,” J. Electrochem. Soc. 167, 106508 (2020).
  13. J. Liu and F. Ciucci, “The deep-prior distribution of relaxation times,” J. Electrochem. Soc. 167, 026506 (2020).
  14. K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics i. alternating current characteristics,” J. Chem. Phys. 9, 341–351 (1941).
  15. D. W. Davidson and R. H. Cole, “Dielectric relaxation in glycerol, propylene glycol, and n-propanol,” J. Chem. Phys. 19, 1484–1490 (1951).
  16. S. Havriliak and S. Negami, “A complex plane analysis of α𝛼\alphaitalic_α-dispersions in some polymer systems,” in J. Polym. Sci., Part C: Polym. Symp., Vol. 14 (1966) pp. 99–117.
  17. T. R. Prabhakar, “A singular integral equation with a generalized mittag leffler function in the kernel,” Yokohama Math. J. 19, 7–15 (1971).
  18. R. Garrappa, F. Mainardi, and G. Maione, “Models of dielectric relaxation based on completely monotone functions,” Fract. Calc. Appl. Anal. 19, 1105–1160 (2016).
  19. R. Saxena, A. Mathai, and H. Haubold, “On generalized fractional kinetic equations,” Physica A 344, 657–664 (2004).
  20. N. Florsch, A. Revil, and C. Camerlynck, “Inversion of generalized relaxation time distributions with optimized damping parameter,” J. Appl. Geophys. 109, 119–132 (2014).
  21. R. Nigmatullin and Y. E. Ryabov, “Cole-davidson dielectric relaxation as a self-similar relaxation process,” Physics of the Solid State 39, 87–90 (1997).
  22. A. Elwakil, A. Allagui, and C. Psychalinos, “On the equivalent impedance of self-similar ladder networks,” IEEE Trans. Circuits Syst. II Express Briefs 68, 2685–2689 (2021).
  23. H. Bateman, Tables of integral transforms, Vol. 2 (McGraw-Hill book company, 1954).
  24. A. Allagui and A. S. Elwakil, “Procedure for obtaining the analytical distribution function of relaxation times for the analysis of impedance spectra using the fox hℎhitalic_h-function,” arxiv  (2024).
  25. J. H. Schwarz, “The generalized stieltjes transform and its inverse,” Journal of mathematical physics 46 (2005).
  26. J. R. Macdonald and M. K. Brachman, ‘‘Linear-system integral transform relations,” Reviews of modern physics 28, 393 (1956).
  27. C. Fox, “The g and h functions as symmetrical fourier kernels,” Trans. Am. Math. Soc. 98, 395–429 (1961).
  28. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-function: theory and applications (Springer Science & Business Media, 2009).
  29. R. Hilfer, “hℎhitalic_h-function representations for stretched exponential relaxation and non-debye susceptibilities in glassy systems,” Phys. Rev. E 65, 061510 (2002).
  30. W. G. Glöckle and T. F. Nonnenmacher, ‘‘Fox function representation of non-debye relaxation processes,” J. Stat. Phys. 71, 741–757 (1993).
  31. G. Williams and D. C. Watts, “Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function,” Transactions of the Faraday society 66, 80–85 (1970).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.