Low-Loss Polarization-Maintaining Optical Router for Photonic Quantum Information Processing (2401.06369v2)
Abstract: In photonic quantum applications, optical routers are required to handle single photons with low loss, high speed, and preservation of their quantum states. Single-photon routing with maintained polarization states is particularly important for utilizing them as qubits. Here, we demonstrate a polarization-maintaining electro-optic router compatible with single photons. Our custom electro-optic modulator is embedded in a configuration of a Mach-Zehnder interferometer, where each optical component achieves polarization-maintaining operation. We observe the performance of the router with 2-4% loss, 20 dB switching extinction ratio, 2.9 ns rise time, and $>$ 99% polarization process fidelity to an ideal identity operation.
- S. Wengerowsky, S. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” \JournalTitleNature 564, 225–228 (2018).
- Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” \JournalTitlenpj Quantum Information 8, 75 (2022).
- H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” \JournalTitlePhysical Review Letters 81, 5923–5935 (1998).
- N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” \JournalTitleReviews of modern physics 83, 33–80 (2011).
- F. Kaneda, B. Christensen, J. Wong, H. Park, K. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” \JournalTitleOptica 2, 1010–1013 (2015).
- F. Kaneda, and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” \JournalTitleScience Advances 5, eaaw8586 (2019).
- K. T. McCusker, and P. G. Kwiat, “Efficient Optical Quantum State Engineering,” \JournalTitlePhysical Review Letters 103, 163602 (2009).
- J. L. O’Brien, “Optical Quantum Computing,” \JournalTitleScience 318, 1567–1570 (2007).
- C.K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” \JournalTitlePhysical Review Letters 59, 2044 (1987).
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” \JournalTitleNature 409, 46–52 (2001).
- M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast Switching of Photonic Entanglement,” \JournalTitlePhysical Review Letters 106, 053901 (2011).
- C. Kupchak, J. Erskine, D. England, and B. Sussman, “Terahertz-bandwidth switching of heralded single photons,” \JournalTitleOptics Letters 44, 1427–1430 (2019).
- D. England, F. Bouchard, K. Fenwick, K. Bonsma-Fisher, Y. Zhang, P. J. Bustard, and B. J. Sussman, “Perspectives on all-optical Kerr switching for quantum optical applications,” \JournalTitleApplied Physics Letters 119, 160501 (2021).
- K. T. McCusker, Y. Huang, A. S. Kowligy, and P. Kumar, “Experimental Demonstration of Interaction-Free All-Optical Switching via the Quantum Zeno Effect,” \JournalTitlePhysical Review Letters 110, 240403 (2013).
- V. Švarc, M. Nováková, G. Mazin, and M. Ježek, “Fully tunable and switchable coupler for photonic routing in quantum detection and modulation,” \JournalTitleOptics Letters 44, 5844–5847 (2019).
- X. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” \JournalTitleOptics Express 19, 22723–22730 (2011).
- Y. Yariv and P. Yeh, “Photonics: Optical Electronics in Modern Communication (THE OXFORD SERIES IN ELECTRICAL AND COMPUTER ENGINEERING),” (Oxford University Press, Oxford, 2006) 6th ed., p.406
- A. Petrova-Mayor and S. Gimbal, “Advanced lab on Fresnel equations,” \JournalTitleAmerican Journal of Physics 83, 935–941 (2015).
- A. Petrova-Mayor and S. Knudsen, “Analysis and manipulation of the induced changes in the state of polarization by mirror scanners,” \JournalTitleApplied Optics 56, 4513–4521 (2017).
- H. Wang, J. Qin, X. Ding, M. Chen, S. Chen, X. You, Y. He, X. Jiang, L. You, Z. Wang, C. Schneider, Jelmer J. Renema, Sven Höfling, C. Lu, and J. Pan, “Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 1014superscript101410^{14}10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT-Dimensional Hilbert Space,” \JournalTitlePhysical Review Letters 123, 250503 (2019).
- E. Meyer-Scott, N. Prasannan, I. Dhand, C. Eigner, V. Quiring, S. Barkhofen, B. Brecht, M. B. Plenio, and C. Silberhorn, “Scalable Generation of Multiphoton Entangled States by Active Feed-Forward and Multiplexing,” \JournalTitlePhysical Review Letters 129, 150501 (2022).
- L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada and J. Lavoie, “Quantum computational advantage with a programmable photonic processor,” \JournalTitleNature 606, 75–81 (2022).
- J. Yoshikawa, K. Makino, S. Kurata, P. Loock, and A. Furusawa, “Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function,” \JournalTitlePhysical Review X 3, 041028 (2013).
- Isaac L. Chuang and M. A. Nielsen “Prescription for experimental determination of the dynamics of a quantum black box,” \JournalTitleJournal of Modern Optics 44, 2455–2467 (1997).
- D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” \JournalTitlePhysical Review A 64, 052312 (2001).
- J. Tang, Z. Hou, Q. Xu, G. Xiang, C. Li, and G. Guo, “Polarization-Independent Coherent Spatial-Temporal Interface with Low Loss,” \JournalTitlePhysical Review Applied 12, 064058 (2019).
- A. Alarcón, P. González, J. Cariñe, G. Lima, and G. Xavier, “Polarization-independent single-photon switch based on a fiber-optical Sagnac interferometer for quantum communication networks,” \JournalTitleOptics Express 28, 33731–33738 (2020).
- A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” \JournalTitlePhysical Review A 66, 053805 (2002).
- T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” \JournalTitlePhysical Review A 66, 042303 (2002).
- J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” \JournalTitleReview of Modern Physics 84, 777 (2012).
- Z. Hou, J. Tang, C. Huang, Y. Huang, G. Xiang, C. Li, and G. Guo, “Entangled-State Time Multiplexing for Multiphoton Entanglement Generation,” \JournalTitlePhysical Review Applied 19, L011002 (2023).
- R.Raussendorf and H.J.Briegel, “A one-way quantum computer,” \JournalTitlePhysical Reveiw Letters 86, 5188–5191 (2001).
- B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” \JournalTitleNature 450, 393–396 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.