Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Low-Loss Polarization-Maintaining Optical Router for Photonic Quantum Information Processing (2401.06369v2)

Published 12 Jan 2024 in quant-ph

Abstract: In photonic quantum applications, optical routers are required to handle single photons with low loss, high speed, and preservation of their quantum states. Single-photon routing with maintained polarization states is particularly important for utilizing them as qubits. Here, we demonstrate a polarization-maintaining electro-optic router compatible with single photons. Our custom electro-optic modulator is embedded in a configuration of a Mach-Zehnder interferometer, where each optical component achieves polarization-maintaining operation. We observe the performance of the router with 2-4% loss, 20 dB switching extinction ratio, 2.9 ns rise time, and $>$ 99% polarization process fidelity to an ideal identity operation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. S. Wengerowsky, S. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” \JournalTitleNature 564, 225–228 (2018).
  2. Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, “A quantum router architecture for high-fidelity entanglement flows in quantum networks,” \JournalTitlenpj Quantum Information 8, 75 (2022).
  3. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” \JournalTitlePhysical Review Letters 81, 5923–5935 (1998).
  4. N. Sangouard, C. Simon, H. Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” \JournalTitleReviews of modern physics 83, 33–80 (2011).
  5. F. Kaneda, B. Christensen, J. Wong, H. Park, K. McCusker, and P. G. Kwiat, “Time-multiplexed heralded single-photon source,” \JournalTitleOptica 2, 1010–1013 (2015).
  6. F. Kaneda, and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” \JournalTitleScience Advances 5, eaaw8586 (2019).
  7. K. T. McCusker, and P. G. Kwiat, “Efficient Optical Quantum State Engineering,” \JournalTitlePhysical Review Letters 103, 163602 (2009).
  8. J. L. O’Brien, “Optical Quantum Computing,” \JournalTitleScience 318, 1567–1570 (2007).
  9. C.K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” \JournalTitlePhysical Review Letters 59, 2044 (1987).
  10. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” \JournalTitleNature 409, 46–52 (2001).
  11. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast Switching of Photonic Entanglement,” \JournalTitlePhysical Review Letters 106, 053901 (2011).
  12. C. Kupchak, J. Erskine, D. England, and B. Sussman, “Terahertz-bandwidth switching of heralded single photons,” \JournalTitleOptics Letters 44, 1427–1430 (2019).
  13. D. England, F. Bouchard, K. Fenwick, K. Bonsma-Fisher, Y. Zhang, P. J. Bustard, and B. J. Sussman, “Perspectives on all-optical Kerr switching for quantum optical applications,” \JournalTitleApplied Physics Letters 119, 160501 (2021).
  14. K. T. McCusker, Y. Huang, A. S. Kowligy, and P. Kumar, “Experimental Demonstration of Interaction-Free All-Optical Switching via the Quantum Zeno Effect,” \JournalTitlePhysical Review Letters 110, 240403 (2013).
  15. V. Švarc, M. Nováková, G. Mazin, and M. Ježek, “Fully tunable and switchable coupler for photonic routing in quantum detection and modulation,” \JournalTitleOptics Letters 44, 5844–5847 (2019).
  16. X. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” \JournalTitleOptics Express 19, 22723–22730 (2011).
  17. Y. Yariv and P. Yeh, “Photonics: Optical Electronics in Modern Communication (THE OXFORD SERIES IN ELECTRICAL AND COMPUTER ENGINEERING),” (Oxford University Press, Oxford, 2006) 6th ed., p.406
  18. A. Petrova-Mayor and S. Gimbal, “Advanced lab on Fresnel equations,” \JournalTitleAmerican Journal of Physics 83, 935–941 (2015).
  19. A. Petrova-Mayor and S. Knudsen, “Analysis and manipulation of the induced changes in the state of polarization by mirror scanners,” \JournalTitleApplied Optics 56, 4513–4521 (2017).
  20. H. Wang, J. Qin, X. Ding, M. Chen, S. Chen, X. You, Y. He, X. Jiang, L. You, Z. Wang, C. Schneider, Jelmer J. Renema, Sven Höfling, C. Lu, and J. Pan, “Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 1014superscript101410^{14}10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT-Dimensional Hilbert Space,” \JournalTitlePhysical Review Letters 123, 250503 (2019).
  21. E. Meyer-Scott, N. Prasannan, I. Dhand, C. Eigner, V. Quiring, S. Barkhofen, B. Brecht, M. B. Plenio, and C. Silberhorn, “Scalable Generation of Multiphoton Entangled States by Active Feed-Forward and Multiplexing,” \JournalTitlePhysical Review Letters 129, 150501 (2022).
  22. L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, J. F. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt, M. J. Collins, A. E. Lita, T. Gerrits, S. W. Nam, V. D. Vaidya, M. Menotti, I. Dhand, Z. Vernon, N. Quesada and J. Lavoie, “Quantum computational advantage with a programmable photonic processor,” \JournalTitleNature 606, 75–81 (2022).
  23. J. Yoshikawa, K. Makino, S. Kurata, P. Loock, and A. Furusawa, “Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function,” \JournalTitlePhysical Review X 3, 041028 (2013).
  24. Isaac L. Chuang and M. A. Nielsen “Prescription for experimental determination of the dynamics of a quantum black box,” \JournalTitleJournal of Modern Optics 44, 2455–2467 (1997).
  25. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” \JournalTitlePhysical Review A 64, 052312 (2001).
  26. J. Tang, Z. Hou, Q. Xu, G. Xiang, C. Li, and G. Guo, “Polarization-Independent Coherent Spatial-Temporal Interface with Low Loss,” \JournalTitlePhysical Review Applied 12, 064058 (2019).
  27. A. Alarcón, P. González, J. Cariñe, G. Lima, and G. Xavier, “Polarization-independent single-photon switch based on a fiber-optical Sagnac interferometer for quantum communication networks,” \JournalTitleOptics Express 28, 33731–33738 (2020).
  28. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” \JournalTitlePhysical Review A 66, 053805 (2002).
  29. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudodemand from stored parametric down-conversion,” \JournalTitlePhysical Review A 66, 042303 (2002).
  30. J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” \JournalTitleReview of Modern Physics 84, 777 (2012).
  31. Z. Hou, J. Tang, C. Huang, Y. Huang, G. Xiang, C. Li, and G. Guo, “Entangled-State Time Multiplexing for Multiphoton Entanglement Generation,” \JournalTitlePhysical Review Applied 19, L011002 (2023).
  32. R.Raussendorf and H.J.Briegel, “A one-way quantum computer,” \JournalTitlePhysical Reveiw Letters 86, 5188–5191 (2001).
  33. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” \JournalTitleNature 450, 393–396 (2007).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: