On the Random Matrix Model of the Virasoro Minimal String (2401.06220v2)
Abstract: The model of two dimensional quantum gravity defining the "Virasoro Minimal String", presented recently by Collier, Eberhardt, M\"{u}hlmann, and Rodriguez, was also shown to be perturbatively (in topology) equivalent to a random matrix model. An alternative definition is presented here, in terms of double-scaled orthogonal polynomials, thereby allowing direct access to non-perturbative physics. Already at leading order, the defining string equation's properties yield valuable information about the non-perturbative fate of the model, confirming that the case $(c{=}25,{\hat c}{=}1)$ (central charges of spacelike and timelike Liouville sectors) is special, by virtue of sharing certain key features of the ${\cal N}{=}1$ supersymmetric JT gravity string equation. Solutions of the full string equation are constructed using a special limit, and the (Cardy) spectral density is completed to all genus and beyond. The distributions of the underlying discrete spectra are readily accessible too, as is the spectral form factor. Some examples of these are exhibited.
- R. Jackiw, Nucl. Phys. B252, 343 (1985).
- C. Teitelboim, Phys. Lett. 126B, 41 (1983).
- E. Brezin and V. A. Kazakov, Phys. Lett. B236, 144 (1990).
- M. R. Douglas and S. H. Shenker, Nucl. Phys. B335, 635 (1990).
- D. J. Gross and A. A. Migdal, Phys. Rev. Lett. 64, 127 (1990a).
- D. J. Gross and A. A. Migdal, Nucl. Phys. B340, 333 (1990b).
- C. V. Johnson, Phys. Rev. D 101, 106023 (2020a), arXiv:1912.03637 [hep-th] .
- C. V. Johnson, Phys. Rev. D 103, 046012 (2021a), arXiv:2005.01893 [hep-th] .
- C. V. Johnson, Phys. Rev. D 103, 046013 (2021b), arXiv:2006.10959 [hep-th] .
- C. V. Johnson, Phys. Rev. Lett. 127, 181602 (2021c), arXiv:2106.09048 [hep-th] .
- C. V. Johnson, (2022a), arXiv:2201.11942 [hep-th] .
- T. G. Mertens and G. J. Turiaci, JHEP 01, 073 (2021), arXiv:2006.07072 [hep-th] .
- K. Suzuki and T. Takayanagi, JHEP 11, 137 (2021), arXiv:2108.12096 [hep-th] .
- Y. Fan and T. G. Mertens, JHEP 05, 092 (2022), arXiv:2109.07770 [hep-th] .
- M. Mirzakhani, Invent. Math. 167, 179 (2006).
- B. Eynard and N. Orantin, (2007), arXiv:0705.3600 [math-ph] .
- F. David, Mod. Phys. Lett. A5, 1019 (1990).
- F. David, Nucl. Phys. B348, 507 (1991).
- C. V. Johnson, (2021d), arXiv:2112.00766 [hep-th] .
- C. V. Johnson and F. Rosso, JHEP 04, 030 (2021), arXiv:2011.06026 [hep-th] .
- A. Castro, “A relation between (2,2m−1)22𝑚1(2,2m-1)( 2 , 2 italic_m - 1 ) minimal strings and the Virasoro minimal string”’, to appear (2024).
- I. M. Gel’fand and L. A. Dikii, Russ. Math. Surveys 30, 77 (1975).
- C. V. Johnson, (2020b), arXiv:2008.13120 [hep-th] .
- A. Belavin and G. Tarnopolsky, JETP Lett. 92, 257 (2010), arXiv:1006.2056 [hep-th] .
- T. R. Morris, Nucl. Phys. B356, 703 (1991).
- S. Dalley, Mod. Phys. Lett. A 7, 1263 (1992), arXiv:hep-th/9111064 .
- C. V. Johnson, (2023), arXiv:2306.10139 [hep-th] .
- C. V. Johnson, (2022b), arXiv:2206.00692 [hep-th] .
- M. Gaudin, Nuclear Physics 25, 447 (1961).
- C. A. Tracy and H. Widom, Commun. Math. Phys. 159, 151 (1994), arXiv:hep-th/9211141 [hep-th] .
- C. V. Johnson, (2021e), arXiv:2104.02733 [hep-th] .
- F. Bornemann, Math. Comp. 79, 871 (2010), arXiv:0804.2543 [math.NA] .
- C. V. Johnson, Int. J. Mod. Phys. D 31, 2242003 (2022c), arXiv:2206.03509 [hep-th] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.