A relation between $(2,2m-1)$ minimal strings and the Virasoro minimal string (2401.06216v2)
Abstract: We propose a connection between the newly formulated Virasoro minimal string and the well-established $(2,2m-1)$ minimal string by deriving the string equation of the Virasoro minimal string using the expansion of its density of states in powers of $E{m+1/2}$. This string equation is expressed as a power series involving double-scaled multicritical matrix models, which are dual to $(2,2m-1)$ minimal strings. This reformulation of Virasoro minimal strings enables us to employ matrix theory tools to compute its $n$-boundary correlators. We analyze the scaling behavior of $n$-boundary correlators and quantum volumes $V{(b)}_{0,n}(\ell_1,\dots,\ell_n)$ in the JT gravity limit.
- Phys. Lett. B 251, 517–524 (1990).
- E. Brezin and V. A. Kazakov, Exactly Solvable Field Theories of Closed Strings, Phys. Lett. B 236, 144–150 (1990).
- T. Budd, Irreducible Metric Maps and Weil–Petersson Volumes, Commun. Math. Phys. 394(2), 887–917 (2022), 2012.11318.
- A. A. Belavin and A. B. Zamolodchikov, On Correlation Numbers in 2D Minimal Gravity and Matrix Models, J. Phys. A 42, 304004 (2009), 0811.0450.
- A. Castro, Critical JT gravity, JHEP 08, 036 (2023), 2306.14823.
- (2023), 2309.10846.
- Phys. Rept. 369, 327–430 (2002), hep-th/0204253.
- Lectures on 2-D gravity and 2-D string theory, in Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles, pages 277–469, 10 1993.
- M. Gutperle and A. Strominger, Time - like boundary Liouville theory, Phys. Rev. D 67, 126002 (2003), hep-th/0301038.
- R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252, 343–356 (1985).
- C. V. Johnson, On the Random Matrix Model of the Virasoro Minimal String, to appear .
- C. V. Johnson, Explorations of nonperturbative Jackiw-Teitelboim gravity and supergravity, Phys. Rev. D 103(4), 046013 (2021), 2006.10959.
- Phys. Rev. D 103(4), 046012 (2021), 2005.01893.
- C. V. Johnson and F. Rosso, Solving Puzzles in Deformed JT Gravity: Phase Transitions and Non-Perturbative Effects, JHEP 04, 030 (2021), 2011.06026.
- V. A. Kazakov, The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity, Mod. Phys. Lett. A 4, 2125 (1989).
- Communications in Mathematical Physics 181(3), 763–787 (December 1996), alg-geom/9604001.
- Nucl. Phys. B 923, 126–143 (2017), 1704.07410.
- M. Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, Journal of The American Mathematical Society 20, 1–23 (01 2007).
- Nucl. Phys. B 362, 665–709 (1991).
- JHEP 01, 073 (2021), 2006.07072.
- See [8] for a review on double-scaled matrix models.
- JHEP 01, 156 (2020), 1911.01659.
- A. M. Polyakov, Quantum Geometry of Bosonic Strings, Physics Letters B 103, 207–210 (1981).
- N. Seiberg, Notes on Quantum Liouville Theory and Quantum Gravity, Progress of Theoretical Physics Supplement 102, 319–349 (03 1990), https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTP.102.319/5376238/102-319.pdf.
- N. Seiberg and D. Shih, Minimal string theory, Comptes Rendus Physique 6, 165–174 (2005), hep-th/0409306.
- (3 2019), 1903.11115.
- K. Suzuki and T. Takayanagi, JT gravity limit of Liouville CFT and matrix model, JHEP 11, 137 (2021), 2108.12096.
- C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126, 41–45 (1983).
- Class. Quant. Grav. 38(20), 204001 (2021), 2011.06038.
- E. Witten, Matrix Models and Deformations of JT Gravity, Proc. Roy. Soc. Lond. A 476(2244), 20200582 (2020), 2006.13414.
- A. B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142, 183–196 (2005), hep-th/0505063.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.