A Half-Century Research Footpath in Statistical Physics (2401.06181v1)
Abstract: We give an abridged account of a continued string of studies in condensed matter physics and in complex systems that span five decades. We provide links to access abstracts and full texts of a selected list of publications. The studies were carried out within a framework of methods and models, some developed in situ, of stochastic processes, statistical mechanics and nonlinear dynamics. The topics, techniques and outcomes reflect evolving interests of the community but also show a particular character that privileges the use of analogies or unusual viewpoints that unite the studies in distinctive ways. The studies have been grouped into thirty sets and these, in turn, placed into three collections according to the main underlying approach: stochastic processes, density functional theory, and nonlinear dynamics. We discuss the body of knowledge created by these research lines in relation to theoretical foundations and spread of subjects. We indicate unsuspected connections underlying different aspects of these investigations and also point out both natural and unanticipated perspectives for future developments. Finally, we refer to our most important and recent contribution: An answer with a firm basis to the long standing question about the limit of validity of ordinary statistical mechanics and the pertinence of Tsallis statistics.
- H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, 1971. ISBN10 0195053168
- M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653-681 (1998). https://doi.org/10.1103/RevModPhys.70.653
- H.G. Schuster, Deterministic Chaos. An Introduction, 2nd Ed. (VCH Publishers, Weinheim, Germany, 1988). ISBN-10: 3527293159.
- E.W. Montroll and M.F. Shlesinger (1983). Maximum Entropy Formalism, Fractals, Scaling Phenomena, and 1/f Noise: A tale of Tails. J. Stat. Phys. 32:209-230. https://link.springer.com/article/10.1007/BF01012708
- P.G. de Gennes, Simple Views on Condensed Matter, Series in Modern Condensed Matter Physics 8, World Scientific 1998 ISBN: 9789810232702
- Statphys Conferences, https://en.wikipedia.org/wiki/Statphys
- A. Robledo, M.C. Barbosa, eds.; https://doi.org/10.1016/S0378-4371(02)00652-0
- E.W. Montroll, G.H. Weiss. Random Walks on Lattices. II J. Math. Phys. 6 167 (1965); https://doi.org/10.1063/1.1704269
- E.W. Montroll Random Walks on Lattices. III. Calculation of First-Passage Times with Application to Exciton Trapping on Photosynthetic Units J. Math. Phys. 10 753 (1969); https://doi.org/10.1063/1.1664902
- Random Walks with Self Similar Clusters. Proc. Natl. Acad. Sci. 78, 3287–3291. https://europepmc.org/article/med/16593023
- J.K. Percus, G.J. Yevick. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110 1 (1958). https://doi.org/10.1103/PhysRev.110.1
- L. Dobrzynski, D.L. Mills. Effect of Reconstruction on the Electronic Free Energy of a Simple Model of Transition Metals. Phys. Rev. B 7, 2367 (1973). https://doi.org/10.1103/PhysRevB.7.2367
- E.W. Montroll, G.H. Weiss (1965). Random Walks on Lattices. II J. Math. Phys. 6:167. https://doi.org/10.1063/1.1704269
- Lattice random walks for sets of random walkers. First passage times, J. Stat. Phys. 23, 11 (1980). https://link.springer.com/article/10.1007/BF01014427
- M. Antoni, S. Ruffo, Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 52, 2361 (1995). https://doi.org/10.1103/PhysRevE.52.2361
- Chaos and statistical mechanics in the Hamiltonian mean field model. Physica D 131, 38 (1999). https://www.sciencedirect.com/science/article/abs/pii/S0167278998002176
- B. Widom, Some Topics in the Theory of Fluids. J. Chem. Phys. 39 (1963) 2808; https://doi.org/10.1063/1.1734110
- B. Widom, Structure of interfaces from uniformity of the chemical potential. J. Stat. Phys. 19 (1978) pp. 563–574. https://doi.org/10.1007/BF01011768
- Fluctuations in the structure of interfaces. Colloids and Surfaces A 128 Issues 1–3, 1 August 1997, pp. 119–128; https://doi.org/10.1016/S0927-7757(96)03913-1
- Ordering, metastability and phase transitions in two-dimensional systems. Part of Topological quantum numbers in nonrelativistic physics. Published in: J. Phys. C 6 (1973) 1181–1203. https://doi.org/10.1088/0022-3719/6/7/010
- R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Advances in Physics 2 2, 143-200 (1979). https://doi.org/10.1080/00018737900101365
- Molecular Theory of Capillarity. (Oxford University Press, Oxford 1989) (reprinted by Dover, New York 2002) ISBN-10 0486425444
- Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980 (1989). DOI:https://doi.org/10.1103/PhysRevLett.63.980
- Density Functional Theories of Hard Particle Systems. In: Mulero Á. (eds) Theory and Simulation of Hard-Sphere Fluids and Related Systems. Lecture Notes in Physics, vol 753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78767-9_7
- V.L. Ginzburg and L.D. Landau, On the Theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950). https://doi.org/10.1016/B978-0-08-010586-4.50078-X
- J W. Cahn and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 28, 258 (1958). https://doi.org/10.1063/1.1744102
- B. Widom, Antonoff’s Rule and the Structure of Interfaces near Tricritical Points. Phys. Rev. Lett. 34, 999 (1975). https://doi.org/10.1103/PhysRevLett.34.999
- B. Widom, Structure of the αγ𝛼𝛾\alpha\gammaitalic_α italic_γ interface. J. Chem. Phys. 68, 3878 (1978). https://doi.org/10.1063/1.436237
- Multicriticality of Wetting, Prewetting, and Surface Transitions. Phys. Rev. Lett. 49, 1565 (Published 22 November 1982). https://doi.org/10.1103/PhysRevLett.49.1565
- Phase transitions and critical points in a model three-component system. J. Am. Chem. Soc. 90, 3064 (1968); https://doi.org/10.1021/ja01014a013
- Lattice-gas model of amphiphiles and of their orientation at interfaces. J. Phys. Chem. 88, 6508 (1984). https://doi.org/10.1021/j150670a012
- Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition. Phys. Rev. B 14, 4978 (1976). https://doi.org/10.1103/PhysRevB.14.4978
- Global phase diagram for a three-component model. Phys. Rev. B, 15, 441 (1977). https://doi.org/10.1103/PhysRevB.15.441
- M. Corti, W. Degiorgio, Critical Exponents near the Lower Consolute Point of Nonionic Micellar Solutions. Phys. Rev. Lett. 55, 19 (1985) 2005. https://doi.org/10.1103/PhysRevLett.55.2005
- M.E. Fisher, Long-Range Crossover and “Nonuniversal” Exponents in Micellar Solutions. Phys. Rev. Lett. 57, 15 (1986) 1911. https://doi.org/10.1103/PhysRevLett.57.1911
- R.E. Goldstein, “Aspects of the Statistical Thermodynamics of Amphiphile Solutions”, Les Houches course Physics of Amphiphiles, Eds. J. Meunier, D. Langevin y N. Boccara, Springer Proceedings in Physics 21, p.261, Berlin 1987. ISBN: 978-1-4613-8389-5
- Fluids in narrow pores: Adsorption, capillary condensation, and critical points. J. Chem. Phys. 84, 2376 (1986). https://doi.org/10.1063/1.450352
- Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides. Nat Commun 5, 5626 (2014). https://doi.org/10.1038/ncomms6626
- Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films. Phys. Rev. B 92, 214503 (2015). https://doi.org/10.1103/PhysRevB.92.214503
- M.A.F. Sanjuán, Lord Robert May of Oxford, Revista Española de Física 34-2, 47 (2020). https://revistadefisica.es/index.php/ref/article/view/2662
- R.M. May, Simple Mathematical Models with Very Complicated Dynamics. Nature 261, 459-467 (1976). https://www.nature.com/articles/261459a0
- T.-Y. Li, J.A. Yorke, “Period Three Implies Chaos”, The American Mathematical Monthly 82, 985-992 (1975). https://www.jstor.org/stable/2318254
- A. Robledo, Generalized statistical mechanics at the onset of chaos, Entropy 15(12), 5178 (2013). https://doi.org/10.3390/e15125178
- Manifestations of the onset of chaos in condensed matter and complex systems, Eur. Phys. J. Spec. Top. 227, 645 (2018). https://doi.org/10.1140/epjst/e2018-00128-9 https://link.springer.com/article/10.1140/epjst/e2018-00128-9
- A. Robledo, L.J. Camacho-Vidales, A Zodiac of Studies on Complex Systems, Rev. Mex. Fís. (Supl.) 1, 32 (2020). https://doi.org/10.31349/SuplRevMexFis.1.4.32
- Fractals at T=Tc𝑇subscript𝑇𝑐T=T_{c}italic_T = italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT due to Instanton-like Configurations. Phys. Rev. Lett. 81, 4289 (1998). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.4289
- Criticality and intermittency in the order parameter space. Phys. Lett. A 268, 286 (2000). https://doi.org/10.1016/S0375-9601(00)00180-8
- Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos: An Interdisciplinary Journal of Nonlinear Science 19, 4 (2009) 043104. https://doi.org/10.1063/1.3247089
- C. Tsallis, Introduction to Nonextensive Statistical Mechanics, 1st Ed. (Springer-Verlag New York, 2009). ISBN 978-0-387-85358-1. https://doi.org/10.1007/978-0-387-85359-8
- Central limit behavior of deterministic dynamical systems. Phys. Rev. E 75, 040106(R) (2007). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.75.040106
- Closer look at time averages of the logistic map at the edge of chaos. Phys. Rev. E 79, 056209 (2009). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.79.056209
- O. Afsar, U. Tirnakli, Generalized Huberman-Rudnick scaling law and robustness of q𝑞qitalic_q-Gaussian probability distributions. EPL, 101 (2013) 20003. https://ui.adsabs.harvard.edu/abs/2014PhyD..272...18A/abstract
- O. Afsar, U. Tirnakli, Relationships and scaling laws among correlation, fractality, Lyapunov divergence and \change[r1]qq𝑞qitalic_q-Gaussian distributions. Physica D, 272 (2014) 18. https://ui.adsabs.harvard.edu/abs/2014PhyD..272...18A/abstract
- H. Jensen, Self-organized Criticality, (Cambridge University Press, Cambridge, UK, 1998). Online ISBN: 9780511622717 https://assets.cambridge.org/97805218/53354/frontmatter/9780521853354_frontmatter.pdf https://www.cambridge.org/core/books/selforganized-criticality/0EE3D52D140A543C2F3A706D18CD4F1A
- Tangled nature model: A model of evolutionary ecology, Journal of Theoretical Biology 216, 2289 (2002). https://doi.org/10.1006/jtbi.2002.2530
- The uneven distribution of numbers in nature. Physica A 293, 297 (2001). https://doi.org/10.1016/S0378-4371(00)00633-6
- M. Kleiber (1932) Body size and metabolism. Hilgardia 6:315–353. https://doi.org/10.3733/hilg.v06n11p315
- Kleiber’s Law, Wikipedia. https://en.wikipedia.org/wiki/Kleiber’s_law
- A general model for the origin of allometric scaling laws in biology. Science 276(5309):122-126. https://doi.org/10.1126/science.276.5309.122
- The fourth dimension of life; fractal geometry and allometric scaling of organisms. Science 284, 1677-1679 (1999). https://doi.org/10.1126/science.284.5420.1677
- Form, function, and evolution of living organisms, PNAS 111 (9) 3332-3337 https://doi.org/10.1073/pnas.1401336111
- Scaling behavior of windows in dissipative dynamical systems, Phys. Rev. Lett. 54, 1095 (1985). https://doi.org/10.1103/PhysRevLett.54.1095
- T. Post, H.W. Capel and J.P. van der Weele. Window scaling in one-dimensional maps. Physics Letters A 136(3) (1989) 109-113. https://doi.org/10.1016/0375-9601(89)90188-6
- The shadow-curves of the orbit diagram permeate the bifurcation diagram, too. Int. J. Bifurcat. Chaos 19 (2009) 3017. https://doi.org/10.1142/S0218127409024621
- C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479-487. https://link.springer.com/article/10.1007/BF01016429
- A. Cho, A Fresh Take on Disorder, Or Disorderly Science? Science 2002, 297, 1268–1269. https://doi.org/10.1126/science.297.5585.1268.
- C. Tsallis, Enthusiasm and Skepticism: Two Pillars of Science? A Nonextensive Statistics Case. Physics 2022, 4(2), 609-632. https://doi.org/10.3390/physics4020041
- Lyapunov function. [Available Online: (accessed on 9 October 2022), https://doi.org/en.wikipedia.org/wiki/Lyapunov_function.
- Infectious disease modeling of social contagion in networks, PLoS Comp. Biol. 6(11), (2010). https://doi.org/10.1371/journal.pcbi.1000968
- E. Lozano-Ochoa, J.F. Camacho and C. Vargas-De-León, Qualitative Stability Analysis of an Obesity Epidemic Model with Social Contagion, Discrete Dynamics in Nature and Society 2017, e1084769, 12 pp, https://doi.org/10.1155/2017/1084769
- Logistic map trajectory distributions: Scaling, entropy and criticality at the transition to chaos, Chaos 31, 033112 (2021); https://doi.org/10.1063/5.0040544
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.