Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Half-Century Research Footpath in Statistical Physics (2401.06181v1)

Published 11 Jan 2024 in cond-mat.stat-mech and nlin.AO

Abstract: We give an abridged account of a continued string of studies in condensed matter physics and in complex systems that span five decades. We provide links to access abstracts and full texts of a selected list of publications. The studies were carried out within a framework of methods and models, some developed in situ, of stochastic processes, statistical mechanics and nonlinear dynamics. The topics, techniques and outcomes reflect evolving interests of the community but also show a particular character that privileges the use of analogies or unusual viewpoints that unite the studies in distinctive ways. The studies have been grouped into thirty sets and these, in turn, placed into three collections according to the main underlying approach: stochastic processes, density functional theory, and nonlinear dynamics. We discuss the body of knowledge created by these research lines in relation to theoretical foundations and spread of subjects. We indicate unsuspected connections underlying different aspects of these investigations and also point out both natural and unanticipated perspectives for future developments. Finally, we refer to our most important and recent contribution: An answer with a firm basis to the long standing question about the limit of validity of ordinary statistical mechanics and the pertinence of Tsallis statistics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, 1971. ISBN10 0195053168
  2. M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653-681 (1998). https://doi.org/10.1103/RevModPhys.70.653
  3. H.G. Schuster, Deterministic Chaos. An Introduction, 2nd Ed. (VCH Publishers, Weinheim, Germany, 1988). ISBN-10: 3527293159.
  4. E.W. Montroll and M.F. Shlesinger (1983). Maximum Entropy Formalism, Fractals, Scaling Phenomena, and 1/f Noise: A tale of Tails. J. Stat. Phys. 32:209-230. https://link.springer.com/article/10.1007/BF01012708
  5. P.G. de Gennes, Simple Views on Condensed Matter, Series in Modern Condensed Matter Physics 8, World Scientific 1998 ISBN: 9789810232702
  6. Statphys Conferences, https://en.wikipedia.org/wiki/Statphys
  7. A. Robledo, M.C. Barbosa, eds.; https://doi.org/10.1016/S0378-4371(02)00652-0
  8. E.W. Montroll, G.H. Weiss. Random Walks on Lattices. II J. Math. Phys. 6 167 (1965); https://doi.org/10.1063/1.1704269
  9. E.W. Montroll Random Walks on Lattices. III. Calculation of First-Passage Times with Application to Exciton Trapping on Photosynthetic Units J. Math. Phys. 10 753 (1969); https://doi.org/10.1063/1.1664902
  10. Random Walks with Self Similar Clusters. Proc. Natl. Acad. Sci. 78, 3287–3291. https://europepmc.org/article/med/16593023
  11. J.K. Percus, G.J. Yevick. Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110 1 (1958). https://doi.org/10.1103/PhysRev.110.1
  12. L. Dobrzynski, D.L. Mills. Effect of Reconstruction on the Electronic Free Energy of a Simple Model of Transition Metals. Phys. Rev. B 7, 2367 (1973). https://doi.org/10.1103/PhysRevB.7.2367
  13. E.W. Montroll, G.H. Weiss (1965). Random Walks on Lattices. II J. Math. Phys. 6:167. https://doi.org/10.1063/1.1704269
  14. Lattice random walks for sets of random walkers. First passage times, J. Stat. Phys. 23, 11 (1980). https://link.springer.com/article/10.1007/BF01014427
  15. M. Antoni, S. Ruffo, Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 52, 2361 (1995). https://doi.org/10.1103/PhysRevE.52.2361
  16. Chaos and statistical mechanics in the Hamiltonian mean field model. Physica D 131, 38 (1999). https://www.sciencedirect.com/science/article/abs/pii/S0167278998002176
  17. B. Widom, Some Topics in the Theory of Fluids. J. Chem. Phys. 39 (1963) 2808; https://doi.org/10.1063/1.1734110
  18. B. Widom, Structure of interfaces from uniformity of the chemical potential. J. Stat. Phys. 19 (1978) pp. 563–574. https://doi.org/10.1007/BF01011768
  19. Fluctuations in the structure of interfaces. Colloids and Surfaces A 128 Issues 1–3, 1 August 1997, pp. 119–128; https://doi.org/10.1016/S0927-7757(96)03913-1
  20. Ordering, metastability and phase transitions in two-dimensional systems. Part of Topological quantum numbers in nonrelativistic physics. Published in: J. Phys. C 6 (1973) 1181–1203. https://doi.org/10.1088/0022-3719/6/7/010
  21. R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Advances in Physics 2 2, 143-200 (1979). https://doi.org/10.1080/00018737900101365
  22. Molecular Theory of Capillarity. (Oxford University Press, Oxford 1989) (reprinted by Dover, New York 2002) ISBN-10 0486425444
  23. Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980 (1989). DOI:https://doi.org/10.1103/PhysRevLett.63.980
  24. Density Functional Theories of Hard Particle Systems. In: Mulero Á. (eds) Theory and Simulation of Hard-Sphere Fluids and Related Systems. Lecture Notes in Physics, vol 753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78767-9_7
  25. V.L. Ginzburg and L.D. Landau, On the Theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950). https://doi.org/10.1016/B978-0-08-010586-4.50078-X
  26. J W. Cahn and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 28, 258 (1958). https://doi.org/10.1063/1.1744102
  27. B. Widom, Antonoff’s Rule and the Structure of Interfaces near Tricritical Points. Phys. Rev. Lett. 34, 999 (1975). https://doi.org/10.1103/PhysRevLett.34.999
  28. B. Widom, Structure of the α⁢γ𝛼𝛾\alpha\gammaitalic_α italic_γ interface. J. Chem. Phys. 68, 3878 (1978). https://doi.org/10.1063/1.436237
  29. Multicriticality of Wetting, Prewetting, and Surface Transitions. Phys. Rev. Lett. 49, 1565 (Published 22 November 1982). https://doi.org/10.1103/PhysRevLett.49.1565
  30. Phase transitions and critical points in a model three-component system. J. Am. Chem. Soc. 90, 3064 (1968); https://doi.org/10.1021/ja01014a013
  31. Lattice-gas model of amphiphiles and of their orientation at interfaces. J. Phys. Chem. 88, 6508 (1984). https://doi.org/10.1021/j150670a012
  32. Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition. Phys. Rev. B 14, 4978 (1976). https://doi.org/10.1103/PhysRevB.14.4978
  33. Global phase diagram for a three-component model. Phys. Rev. B, 15, 441 (1977). https://doi.org/10.1103/PhysRevB.15.441
  34. M. Corti, W. Degiorgio, Critical Exponents near the Lower Consolute Point of Nonionic Micellar Solutions. Phys. Rev. Lett. 55, 19 (1985) 2005. https://doi.org/10.1103/PhysRevLett.55.2005
  35. M.E. Fisher, Long-Range Crossover and “Nonuniversal” Exponents in Micellar Solutions. Phys. Rev. Lett. 57, 15 (1986) 1911. https://doi.org/10.1103/PhysRevLett.57.1911
  36. R.E. Goldstein, “Aspects of the Statistical Thermodynamics of Amphiphile Solutions”, Les Houches course Physics of Amphiphiles, Eds. J. Meunier, D. Langevin y N. Boccara, Springer Proceedings in Physics 21, p.261, Berlin 1987. ISBN: 978-1-4613-8389-5
  37. Fluids in narrow pores: Adsorption, capillary condensation, and critical points. J. Chem. Phys. 84, 2376 (1986). https://doi.org/10.1063/1.450352
  38. Ubiquitous long-range antiferromagnetic coupling across the interface between superconducting and ferromagnetic oxides. Nat Commun 5, 5626 (2014). https://doi.org/10.1038/ncomms6626
  39. Berezinskii-Kosterlitz-Thouless transition in homogeneously disordered superconducting films. Phys. Rev. B 92, 214503 (2015). https://doi.org/10.1103/PhysRevB.92.214503
  40. M.A.F. Sanjuán, Lord Robert May of Oxford, Revista Española de Física 34-2, 47 (2020). https://revistadefisica.es/index.php/ref/article/view/2662
  41. R.M. May, Simple Mathematical Models with Very Complicated Dynamics. Nature 261, 459-467 (1976). https://www.nature.com/articles/261459a0
  42. T.-Y. Li, J.A. Yorke, “Period Three Implies Chaos”, The American Mathematical Monthly 82, 985-992 (1975). https://www.jstor.org/stable/2318254
  43. A. Robledo, Generalized statistical mechanics at the onset of chaos, Entropy 15(12), 5178 (2013). https://doi.org/10.3390/e15125178
  44. Manifestations of the onset of chaos in condensed matter and complex systems, Eur. Phys. J. Spec. Top. 227, 645 (2018). https://doi.org/10.1140/epjst/e2018-00128-9 https://link.springer.com/article/10.1140/epjst/e2018-00128-9
  45. A. Robledo, L.J. Camacho-Vidales, A Zodiac of Studies on Complex Systems, Rev. Mex. Fís. (Supl.) 1, 32 (2020). https://doi.org/10.31349/SuplRevMexFis.1.4.32
  46. Fractals at T=Tc𝑇subscript𝑇𝑐T=T_{c}italic_T = italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT due to Instanton-like Configurations. Phys. Rev. Lett. 81, 4289 (1998). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.81.4289
  47. Criticality and intermittency in the order parameter space. Phys. Lett. A 268, 286 (2000). https://doi.org/10.1016/S0375-9601(00)00180-8
  48. Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos: An Interdisciplinary Journal of Nonlinear Science 19, 4 (2009) 043104. https://doi.org/10.1063/1.3247089
  49. C. Tsallis, Introduction to Nonextensive Statistical Mechanics, 1st Ed. (Springer-Verlag New York, 2009). ISBN 978-0-387-85358-1. https://doi.org/10.1007/978-0-387-85359-8
  50. Central limit behavior of deterministic dynamical systems. Phys. Rev. E 75, 040106(R) (2007). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.75.040106
  51. Closer look at time averages of the logistic map at the edge of chaos. Phys. Rev. E 79, 056209 (2009). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.79.056209
  52. O. Afsar, U. Tirnakli, Generalized Huberman-Rudnick scaling law and robustness of q𝑞qitalic_q-Gaussian probability distributions. EPL, 101 (2013) 20003. https://ui.adsabs.harvard.edu/abs/2014PhyD..272...18A/abstract
  53. O. Afsar, U. Tirnakli, Relationships and scaling laws among correlation, fractality, Lyapunov divergence and \change[r1]qq𝑞qitalic_q-Gaussian distributions. Physica D, 272 (2014) 18. https://ui.adsabs.harvard.edu/abs/2014PhyD..272...18A/abstract
  54. H. Jensen, Self-organized Criticality, (Cambridge University Press, Cambridge, UK, 1998). Online ISBN: 9780511622717 https://assets.cambridge.org/97805218/53354/frontmatter/9780521853354_frontmatter.pdf https://www.cambridge.org/core/books/selforganized-criticality/0EE3D52D140A543C2F3A706D18CD4F1A
  55. Tangled nature model: A model of evolutionary ecology, Journal of Theoretical Biology 216, 2289 (2002). https://doi.org/10.1006/jtbi.2002.2530
  56. The uneven distribution of numbers in nature. Physica A 293, 297 (2001). https://doi.org/10.1016/S0378-4371(00)00633-6
  57. M. Kleiber (1932) Body size and metabolism. Hilgardia 6:315–353. https://doi.org/10.3733/hilg.v06n11p315
  58. Kleiber’s Law, Wikipedia. https://en.wikipedia.org/wiki/Kleiber’s_law
  59. A general model for the origin of allometric scaling laws in biology. Science 276(5309):122-126. https://doi.org/10.1126/science.276.5309.122
  60. The fourth dimension of life; fractal geometry and allometric scaling of organisms. Science 284, 1677-1679 (1999). https://doi.org/10.1126/science.284.5420.1677
  61. Form, function, and evolution of living organisms, PNAS 111 (9) 3332-3337 https://doi.org/10.1073/pnas.1401336111
  62. Scaling behavior of windows in dissipative dynamical systems, Phys. Rev. Lett. 54, 1095 (1985). https://doi.org/10.1103/PhysRevLett.54.1095
  63. T. Post, H.W. Capel and J.P. van der Weele. Window scaling in one-dimensional maps. Physics Letters A 136(3) (1989) 109-113. https://doi.org/10.1016/0375-9601(89)90188-6
  64. The shadow-curves of the orbit diagram permeate the bifurcation diagram, too. Int. J. Bifurcat. Chaos 19 (2009) 3017. https://doi.org/10.1142/S0218127409024621
  65. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479-487. https://link.springer.com/article/10.1007/BF01016429
  66. A. Cho, A Fresh Take on Disorder, Or Disorderly Science? Science 2002, 297, 1268–1269. https://doi.org/10.1126/science.297.5585.1268.
  67. C. Tsallis, Enthusiasm and Skepticism: Two Pillars of Science? A Nonextensive Statistics Case. Physics 2022, 4(2), 609-632. https://doi.org/10.3390/physics4020041
  68. Lyapunov function. [Available Online: (accessed on 9 October 2022), https://doi.org/en.wikipedia.org/wiki/Lyapunov_function.
  69. Infectious disease modeling of social contagion in networks, PLoS Comp. Biol. 6(11), (2010). https://doi.org/10.1371/journal.pcbi.1000968
  70. E. Lozano-Ochoa, J.F. Camacho and C. Vargas-De-León, Qualitative Stability Analysis of an Obesity Epidemic Model with Social Contagion, Discrete Dynamics in Nature and Society 2017, e1084769, 12 pp, https://doi.org/10.1155/2017/1084769
  71. Logistic map trajectory distributions: Scaling, entropy and criticality at the transition to chaos, Chaos 31, 033112 (2021); https://doi.org/10.1063/5.0040544

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: