Papers
Topics
Authors
Recent
2000 character limit reached

A SymTFT for Continuous Symmetries (2401.06128v3)

Published 11 Jan 2024 in hep-th, cond-mat.str-el, hep-ph, math-ph, and math.MP

Abstract: Symmetry is a powerful tool for studying dynamics in QFT: it provides selection rules, constrains RG flows, and often simplifies analysis. Currently, our understanding is that the most general form of symmetry is described by categorical symmetries which can be realized via Symmetry TQFTs or ``SymTFTs." In this paper, we show how the framework of the SymTFT, which is understood for discrete symmetries (i.e. finite categorical symmetries), can be generalized to continuous symmetries. In addition to demonstrating how $U(1)$ global symmetries can be incorporated into the paradigm of the SymTFT, we apply our formalism to study cubic $U(1)$ anomalies in $4d$ QFTs, describe the $\mathbb{Q}/\mathbb{Z}$ non-invertible chiral symmetry in $4d$ theories, and conjecture the SymTFT for general continuous $G{(0)}$ global symmetries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in Snowmass 2021. 5, 2022. arXiv:2205.09545 [hep-th].
  2. D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,” arXiv:2209.07471 [hep-th].
  3. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  4. S. Schafer-Nameki, “ICTP Lectures on (Non-)Invertible Generalized Symmetries,” arXiv:2305.18296 [hep-th].
  5. T. D. Brennan and S. Hong, “Introduction to Generalized Global Symmetries in QFT and Particle Physics,” arXiv:2306.00912 [hep-ph].
  6. L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S. W. Gould, A. Platschorre, and H. Tillim, “Lectures on Generalized Symmetries,” arXiv:2307.07547 [hep-th].
  7. S.-H. Shao, “What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry,” arXiv:2308.00747 [hep-th].
  8. J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and anomalies of non-invertible symmetries,” JHEP 10 (2023) 053, arXiv:2301.07112 [hep-th].
  9. J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-invertible Defects,” Commun. Math. Phys. 404 no. 2, (2023) 1021–1124, arXiv:2209.11062 [hep-th].
  10. L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, “Algebraic higher symmetry and categorical symmetry – a holographic and entanglement view of symmetry,” Phys. Rev. Res. 2 no. 4, (2020) 043086, arXiv:2005.14178 [cond-mat.str-el].
  11. F. Apruzzi, F. Bonetti, I. n. García Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” Commun. Math. Phys. 402 no. 1, (2023) 895–949, arXiv:2112.02092 [hep-th].
  12. L. Bhardwaj, L. E. Bottini, D. Pajer, and S. Schafer-Nameki, “The Club Sandwich: Gapless Phases and Phase Transitions with Non-Invertible Symmetries,” arXiv:2312.17322 [hep-th].
  13. F. Apruzzi, F. Bonetti, D. S. W. Gould, and S. Schafer-Nameki, “Aspects of Categorical Symmetries from Branes: SymTFTs and Generalized Charges,” arXiv:2306.16405 [hep-th].
  14. L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT,” arXiv:2305.17159 [hep-th].
  15. M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs for 3d QFTs from M-theory,” JHEP 02 (2023) 226, arXiv:2210.03703 [hep-th].
  16. Z. Sun and Y. Zheng, “When are Duality Defects Group-Theoretical?,” arXiv:2307.14428 [hep-th].
  17. C. Zhang and C. Córdova, “Anomalies of (1+1)⁢D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries,” arXiv:2304.01262 [cond-mat.str-el].
  18. C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
  19. A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “Anomalies of non-invertible self-duality symmetries: fractionalization and gauging,” arXiv:2308.11707 [hep-th].
  20. A. Ballin, T. Creutzig, T. Dimofte, and W. Niu, “3d mirror symmetry of braided tensor categories,” arXiv:2304.11001 [hep-th].
  21. K. Costello, T. Creutzig, and D. Gaiotto, “Higgs and Coulomb branches from vertex operator algebras,” JHEP 03 (2019) 066, arXiv:1811.03958 [hep-th].
  22. K. Costello and D. Gaiotto, “Vertex Operator Algebras and 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 gauge theories,” JHEP 05 (2019) 018, arXiv:1804.06460 [hep-th].
  23. N. Garner, “Twisted Formalism for 3d 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Theories,” arXiv:2204.02997 [hep-th].
  24. G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,” Commun. Math. Phys. 125 (1989) 417.
  25. J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152.
  26. T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
  27. A. S. Cattaneo, P. Cotta-Ramusino, J. Frohlich, and M. Martellini, “Topological BF theories in three-dimensions and four-dimensions,” J. Math. Phys. 36 (1995) 6137–6160, arXiv:hep-th/9505027.
  28. A. S. Cattaneo, P. Cotta-Ramusino, F. Fucito, M. Martellini, M. Rinaldi, A. Tanzini, and M. Zeni, “Four-dimensional Yang-Mills theory as a deformation of topological BF theory,” Commun. Math. Phys. 197 (1998) 571–621, arXiv:hep-th/9705123.
  29. Z.-F. Zhang and P. Ye, “Topological orders, braiding statistics, and mixture of two types of twisted BF theories in five dimensions,” JHEP 04 (2022) 138, arXiv:2104.07067 [hep-th].
  30. S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric Langlands Program,” arXiv:hep-th/0612073.
  31. S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 no. 1, (2010) 87–178, arXiv:0804.1561 [hep-th].
  32. L. Bhardwaj, L. E. Bottini, D. Pajer, and S. Schafer-Nameki, “Gapped Phases with Non-Invertible Symmetries: (1+1)d,” arXiv:2310.03784 [hep-th].
  33. L. Bhardwaj, L. E. Bottini, D. Pajer, and S. Schafer-Nameki, “Categorical Landau Paradigm for Gapped Phases,” arXiv:2310.03786 [cond-mat.str-el].
  34. C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].
  35. F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
  36. C. Cordova and K. Ohmori, “Noninvertible Chiral Symmetry and Exponential Hierarchies,” Phys. Rev. X 13 no. 1, (2023) 011034, arXiv:2205.06243 [hep-th].
  37. Y. Choi, H. T. Lam, and S.-H. Shao, “Noninvertible Global Symmetries in the Standard Model,” Phys. Rev. Lett. 129 no. 16, (2022) 161601, arXiv:2205.05086 [hep-th].
  38. P.-S. Hsin, H. T. Lam, and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 no. 3, (2019) 039, arXiv:1812.04716 [hep-th].
  39. D. G. Delmastro, J. Gomis, P.-S. Hsin, and Z. Komargodski, “Anomalies and symmetry fractionalization,” SciPost Phys. 15 no. 3, (2023) 079, arXiv:2206.15118 [hep-th].
  40. T. D. Brennan, C. Cordova, and T. T. Dumitrescu, “Line Defect Quantum Numbers & Anomalies,” arXiv:2206.15401 [hep-th].
  41. M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, “Symmetry Fractionalization, Defects, and Gauging of Topological Phases,” Phys. Rev. B 100 no. 11, (2019) 115147, arXiv:1410.4540 [cond-mat.str-el].
  42. X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski, “Anomalous Symmetry Fractionalization and Surface Topological Order,” Phys. Rev. X 5 no. 4, (2015) 041013, arXiv:1403.6491 [cond-mat.str-el].
  43. T. D. Brennan and A. Sheckler, “Anomaly Enforced Gaplessness for Background Flux Anomalies and Symmetry Fractionalization,” arXiv:2311.00093 [hep-th].
  44. T. D. Brennan, “Anomaly Enforced Gaplessness and Symmetry Fractionalization for S⁢p⁢i⁢nG𝑆𝑝𝑖subscript𝑛𝐺Spin_{G}italic_S italic_p italic_i italic_n start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT Symmetries,” arXiv:2308.12999 [hep-th].
  45. T. D. Brennan and K. Intriligator, “Anomalies of 4d S⁢p⁢i⁢nG𝑆𝑝𝑖subscript𝑛𝐺Spin_{G}italic_S italic_p italic_i italic_n start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT Theories,” arXiv:2312.04756 [hep-th].
  46. J. Wang, X.-G. Wen, and E. Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60 no. 5, (2019) 052301, arXiv:1810.00844 [hep-th].
Citations (27)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 7 likes about this paper.