Papers
Topics
Authors
Recent
Search
2000 character limit reached

Page-curve-like entanglement dynamics in open quantum systems

Published 11 Jan 2024 in quant-ph, cond-mat.stat-mech, and hep-th | (2401.06042v2)

Abstract: The entanglement entropy of a black hole, and that of its Hawking radiation, are expected to follow the so-called Page curve: After an increase in line with Hawking's calculation, it is expected to decrease back to zero once the black hole has fully evaporated, as demanded by unitarity. Recently, a simple system-plus-bath model has been proposed which shows a similar behaviour. Here, we make a general argument as to why such a Page-curve-like entanglement dynamics should be expected to hold generally for system-plus-bath models at small coupling and low temperatures, when the system is initialised in a pure state far from equilibrium. The interaction with the bath will then generate entanglement entropy, but it eventually has to decrease to the value prescribed by the corresponding mean-force Gibbs state. Under those conditions, it is close to the system ground state. We illustrate this on two paradigmatic open-quantum-system models, the exactly solvable harmonic quantum Brownian motion and the spin-boson model, which we study numerically. In the first example we find that the intermediate entropy of an initially localised impurity is higher for more localised initial states. In the second example, for an impurity initialised in the excited state, the Page time--when the entropy reaches its maximum--occurs when the excitation has half decayed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
  2. U. Schollwöck, Annals of Physics 326, 96 (2011).
  3. P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
  4. W. W. Ho and D. A. Abanin, Phys. Rev. B 95, 094302 (2017).
  5. H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
  6. S. W. Hawking, Communications In Mathematical Physics 43, 199–220 (1975).
  7. J. D. Bekenstein, Lettere Al Nuovo Cimento Series 2 4, 737–740 (1972).
  8. R. M. Wald, Living Reviews in Relativity 4, 10.12942/lrr-2001-6 (2001).
  9. D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).
  10. G. Penington, Journal of High Energy Physics 2020, 10.1007/jhep09(2020)002 (2020).
  11. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006a).
  12. S. Ryu and T. Takayanagi, Journal of High Energy Physics 2006, 045–045 (2006b).
  13. J. Maldacena, International Journal of Theoretical Physics 38, 1113–1133 (1999).
  14. S. Kehrein, Page curve entanglement dynamics in an analytically solvable model (2023), arXiv:2311.18045 [quant-ph] .
  15. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).
  16. U. Weiss, Quantum Dissipative Systems, 3rd ed. (WORLD SCIENTIFIC, 2008).
  17. P. Calabrese and J. Cardy, Journal of Physics A: Mathematical and Theoretical 42, 504005 (2009).
  18. P. Łydżba, M. Rigol, and L. Vidmar, Phys. Rev. Lett. 125, 180604 (2020).
  19. E. Bianchi, L. Hackl, and M. Kieburg, Phys. Rev. B 103, L241118 (2021).
  20. K. Ptaszyński and M. Esposito, Phys. Rev. E 106, 014122 (2022).
  21. A. Caldeira and A. Leggett, Physica A: Statistical Mechanics and its Applications 121, 587 (1983a).
  22. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983b).
  23. P. Hänggi and G.-L. Ingold, Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 026105 (2005).
  24. A. Lampo, M. A. Garcia-March, and M. Lewenstein, Quantum Brownian Motion Revisited: Extensions and Applications (Springer Cham, 2019).
  25. S. M. Barnett, J. D. Cresser, and S. Croke, Revisiting the damped quantum harmonic oscillator (2023), arXiv:2306.15013 [quant-ph] .
  26. N. Boudjada and D. Segal, The Journal of Physical Chemistry A 118, 11323–11336 (2014).
  27. Y. Yang and C.-Q. Wu, EPL (Europhysics Letters) 107, 30003 (2014).
  28. M. Thoss, H. Wang, and W. H. Miller, The Journal of Chemical Physics 115, 2991–3005 (2001).
  29. F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett. 98, 210402 (2007).
  30. J. D. Cresser and J. Anders, Phys. Rev. Lett. 127, 250601 (2021).
  31. G. M. Timofeev and A. S. Trushechkin, Int. J. Mod. Phys. A 37, 2243021 (2022).
  32. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  33. M. Srednicki, Phys. Rev. E 50, 888 (1994).
  34. A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, Advances in Physics 65, 239 (2016).
  35. C. Gogolin and J. Eisert, Reports on Progress in Physics 79, 056001 (2016).
  36. E. B. Davies, Commun. Math. Phys. 39, 91 (1974).
  37. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).
  38. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
  39. A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information, Napoli Series on physics and Astrophysics (Bibliopolis, 2005).
  40. See Supplemental Material at [URL will be inserted by publisher] for details on the exact solution of the dynamics of the oscillator impurity.
  41. T. F. Demarie, Pedagogical introduction to the entropy of entanglement for gaussian states (2012), arXiv:1209.2748 [quant-ph] .
  42. H. Scutaru, J. Phys. A Math. Gen. 31, 3659 (1998).
  43. A. Nazir and D. P. S. McCutcheon, Journal of Physics: Condensed Matter 28, 103002 (2016).
  44. L. A. Correa and J. Glatthard, Potential renormalisation, Lamb shift and mean-force Gibbs state – to shift or not to shift? (2023), arXiv:2305.08941 [quant-ph] .
  45. Y. Tanimura and R. Kubo, Journal of the Physical Society of Japan 58, 101 (1989).
  46. Y. Tanimura, The Journal of Chemical Physics 153, 020901 (2020).
  47. J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 183, 1760 (2012).
  48. J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 184, 1234 (2013).
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.