Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Diffeomorphism invariant classical-quantum path integrals for Nordstrom gravity (2401.05514v1)

Published 10 Jan 2024 in gr-qc, hep-th, and quant-ph

Abstract: When classical degrees of freedom and quantum degrees of freedom are consistently coupled, the former diffuse, while the latter undergo decoherence. Here, we construct a theory of quantum matter fields and Nordstrom gravity in which the space-time metric is treated classically. The dynamics is constructed via the classical-quantum path integral and is completely positive, trace preserving (CPTP), and respects the classical-quantum split. The weak field limit of the model matches the Newtonian limit of the full covariant path integral but it is easier to show that the theory is both diffeomorphism invariant, CPTP, and has the appropriate classical limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. Iwao Sato, “An attempt to unite the quantum theory of wave field with the theory of general relativity,” Science reports of the Tohoku University 1st ser. Physics, chemistry, astronomy 33, 30–37 (1950).
  2. Christian Møller, “The energy-momentum complex in general relativity and related problems,” Les Théories Relativistes de la Gravitation, Colloques Internationaux CNRS 91, 2 (1962).
  3. Leon Rosenfeld, ‘‘On quantization of fields,” Nuclear Physics 40, 353–356 (1963).
  4. Nicolas Gisin, “Stochastic quantum dynamics and relativity,” Helv. Phys. Acta 62, 363–371 (1989).
  5. Nicolas Gisin, “Weinberg’s non-linear quantum mechanics and supraluminal communications,” Physics Letters A 143, 1–2 (1990).
  6. Joseph Polchinski, “Weinberg’s nonlinear quantum mechanics and the einstein-podolsky-rosen paradox,” Physical Review Letters 66, 397 (1991).
  7. Jonathan Oppenheim, “A postquantum theory of classical gravity?” Physical Review X 13, 041040 (2023), arXiv:1811.03116.
  8. Philippe Blanchard and Arkadiusz Jadczyk, “On the interaction between classical and quantum systems,” Physics Letters A 175, 157–164 (1993).
  9. Ph Blanchard and Arkadiusz Jadczyk, “Event-enhanced quantum theory and piecewise deterministic dynamics,” Annalen der Physik 507, 583–599 (1995), https://arxiv.org/abs/hep-th/9409189.
  10. Lajos Diosi, “Quantum dynamics with two planck constants and the semiclassical limit,”  (1995), arXiv:quant-ph/9503023 [quant-ph] .
  11. Lajos Diósi, “Hybrid quantum-classical master equations,” Physica Scripta 2014, 014004 (2014).
  12. D Kafri, JM Taylor,  and GJ Milburn, “A classical channel model for gravitational decoherence,” New Journal of Physics 16, 065020 (2014).
  13. Antoine Tilloy and Lajos Diósi, “Sourcing semiclassical gravity from spontaneously localized quantum matter,” Physical Review D 93, 024026 (2016).
  14. Antoine Tilloy and Lajos Diósi, “Principle of least decoherence for newtonian semiclassical gravity,” Physical Review D 96, 104045 (2017).
  15. David Poulin and John Preskill, “Information loss in quantum field theories,”   (2017), Frontiers of Quantum Information Physics, KITP.
  16. Cécile M. DeWitt and Dean Rickles, The role of gravitation in physics: Report from the 1957 Chapel Hill Conference, Vol. 5 (epubli, 2011).
  17. Bryce S DeWitt, “Definition of commutators via the uncertainty principle,” Journal of Mathematical Physics 3, 619–624 (1962).
  18. Bryce S DeWitt, ‘‘Quantum theory of gravity. i. the canonical theory,” Physical Review 160, 1113 (1967).
  19. Kenneth Eppley and Eric Hannah, “The necessity of quantizing the gravitational field,” Foundations of Physics 7, 51–68 (1977).
  20. Yakir Aharonov and Daniel Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, 2003) pp212-213.
  21. Daniel R Terno, “Inconsistency of quantum—classical dynamics, and what it implies,” Foundations of Physics 36, 102–111 (2006).
  22. Chiara Marletto and Vlatko Vedral, “Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity,” Physical review letters 119, 240402 (2017a).
  23. Thomas D. Galley, Flaminia Giacomini,  and John H. Selby, “Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible,” Quantum 7, 1142 (2023), arXiv:2301.10261 [quant-ph] .
  24. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “The two classes of hybrid classical-quantum dynamics,”   (2022), arXiv:2203.01332.
  25. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity,” Nature Communications 14, 7910 (2023a), arXiv:2203.01982.
  26. Jonathan Oppenheim, Carlo Sparaciari, Barbara Šoda,  and Zachary Weller-Davies, “Objective trajectories in hybrid classical-quantum dynamics,” Quantum 7, 891 (2023b).
  27. Isaac Layton, Jonathan Oppenheim,  and Zachary Weller-Davies, “A healthier semi-classical dynamics,”   (2022), arXiv:2208.11722 [quant-ph] .
  28. Jonathan Oppenheim and Zachary Weller-Davies, “Path integrals for classical-quantum dynamics,”   (2023a), arXiv:2301.04677 [quant-ph] .
  29. Jonathan Oppenheim and Zachary Weller-Davies, “Covariant path integrals for quantum fields back-reacting on classical space-time,”   (2023b), arXiv:2302.07283 [gr-qc] .
  30. Lajos Diósi, “The gravity-related decoherence master equation from hybrid dynamics,” in Journal of Physics-Conference Series, Vol. 306 (2011) p. 012006.
  31. Isaac Layton, Jonathan Oppenheim, Andrea Russo,  and Zachary Weller-Davies, “The weak field limit of quantum matter back-reacting on classical spacetime,” JHEP 08, 163 (2023), arXiv:2307.02557 [gr-qc] .
  32. Jonathan Oppenheim and Zachary Weller-Davies, “The constraints of post-quantum classical gravity,” JHEP 02, 080 (2022), arXiv:2011.15112 [hep-th] .
  33. Jonathan Oppenheim, “The constraints of a continuous realisation of hybrid classical-quantum gravity,” Manuscript in preparation.
  34. Philip M. Pearle, “Combining Stochastic Dynamical State Vector Reduction With Spontaneous Localization,” Phys. Rev. A 39, 2277–2289 (1989).
  35. Gian Carlo Ghirardi, Philip Pearle,  and Alberto Rimini, “Markov processes in hilbert space and continuous spontaneous localization of systems of identical particles,” Phys. Rev. A 42, 78–89 (1990).
  36. Angelo Bassi and GianCarlo Ghirardi, “Dynamical reduction models,” Physics Reports 379, 257–426 (2003).
  37. G. C. Ghirardi, A. Rimini,  and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470–491 (1986a).
  38. Jonathan Oppenheim and Zachary Weller-Davies, “Lorentz invariant information destruction is not lorentz covariant,”  (2020), unpublished draft.
  39. Pietro Capuozzo, Emanuele Panella, Tancredi Schettini Gherardini,  and Dimitri D. Vvedensky, “Path integral monte carlo method for option pricing,” Physica A: Statistical Mechanics and its Applications 581 (2021), https://doi.org/10.1016/j.physa.2021.126231.
  40. Guido Montagna, Oreste Nicrosini,  and Nicola Moreni, “A path integral way to option pricing,” Physica A: Statistical Mechanics and its Applications 310, 450–466 (2002).
  41. Phelim P. Boyle, “Options: A monte carlo approach,” Journal of Financial Economics 4, 323–338 (1977).
  42. M Creutz and B Freedman, “A statistical approach to quantum mechanics,” Annals of Physics 132, 427–462 (1981).
  43. Michael Creutz, Laurence Jacobs,  and Claudio Rebbi, “Monte carlo computations in lattice gauge theories,” Physics Reports 95, 201–282 (1983).
  44. H Georgi, “Effective field theory,” Annual Review of Nuclear and Particle Science 43, 209–252 (1993).
  45. L M Sieberer, M Buchhold,  and S Diehl, “Keldysh field theory for driven open quantum systems,” Reports on Progress in Physics 79, 096001 (2016).
  46. Lajos Diósi, “Is there a relativistic gorini-kossakowski-lindblad-sudarshan master equation?” Physical Review D 106, L051901 (2022).
  47. R.P Feynman and F.L Vernon, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of Physics 24, 118–173 (1963).
  48. G.Nordström, Annalen-der-Physik 42, 533 (1913).
  49. Finn Ravndal, “Scalar gravitation and extra dimensions,” Comment. Phys. Math. Soc. Sci. Fenn. 166, 151–163 (2004), arXiv:gr-qc/0405030 .
  50. John D. Norton, “Einstein, nordström and the early demise of scalar, lorentz-covariant theories of gravitation,” Archive for History of Exact Sciences 45, 17–94 (1992).
  51. F. W. Dyson, A. S. Eddington,  and C. Davidson, “A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919,” Phil. Trans. Roy. Soc. Lond. A 220, 291–333 (1920).
  52. Matthias Bartelmann, “Gravitational lensing,” Classical and Quantum Gravity 27, 233001 (2010).
  53. Oliver Pooley, “Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates,” Einstein Stud. 13, 105–143 (2017), arXiv:1506.03512 [physics.hist-ph] .
  54. Nathalie Deruelle, “Nordström’s scalar theory of gravity and the equivalence principle,” General Relativity and Gravitation 43, 3337–3354 (2011).
  55. Zachary Weller-Davies, “A model of quantum gravity with dynamical collapse,”  (2024), manuscript in preparation.
  56. Andrea Russo Andrzej Grudka, Jonathan Oppenheim and Muhammad Sajjad, ‘‘Renormalisation of cq theories,”  (2024), manuscript in preparation.
  57. Dvir Kafri and J. M. Taylor, “A noise inequality for classical forces,”  (2013), arXiv:1311.4558 [quant-ph] .
  58. D Kafri, GJ Milburn,  and JM Taylor, “Bounds on quantum communication via newtonian gravity,” New Journal of Physics 17, 015006 (2015).
  59. Sougato Bose, Anupam Mazumdar, Gavin W. Morley, Hendrik Ulbricht, Marko Toroš, Mauro Paternostro, Andrew A. Geraci, Peter F. Barker, M. S. Kim,  and Gerard Milburn, “Spin entanglement witness for quantum gravity,” Phys. Rev. Lett. 119, 240401 (2017).
  60. C. Marletto and V. Vedral, ‘‘Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity,” Phys. Rev. Lett. 119, 240402 (2017b).
  61. Ryan J. Marshman, Anupam Mazumdar,  and Sougato Bose, “Locality and entanglement in table-top testing of the quantum nature of linearized gravity,” Physical Review A 101 (2020), 10.1103/physreva.101.052110.
  62. Marios Christodoulou, Andrea Di Biagio, Markus Aspelmeyer, Časlav Brukner, Carlo Rovelli,  and Richard Howl, “Locally Mediated Entanglement in Linearized Quantum Gravity,” Phys. Rev. Lett. 130, 100202 (2023), arXiv:2202.03368 [quant-ph] .
  63. Daine L. Danielson, Gautam Satishchandran,  and Robert M. Wald, “Gravitationally mediated entanglement: Newtonian field versus gravitons,” Phys. Rev. D 105, 086001 (2022), arXiv:2112.10798 [quant-ph] .
  64. Daniel Carney, Holger Müller,  and Jacob M. Taylor, “Using an atom interferometer to infer gravitational entanglement generation,” PRX Quantum 2, 030330 (2021).
  65. Kirill Streltsov, Julen Simon Pedernales,  and Martin Bodo Plenio, “On the significance of interferometric revivals for the fundamental description of gravity,” Universe 8, 58 (2022).
  66. T. Banks, M. E. Peskin,  and L. Susskind, “Difficulties for the evolution of pure states into mixed states,” Nuclear Physics B 244, 125–134 (1984).
  67. Gian Carlo Ghirardi, Alberto Rimini,  and Tullio Weber, “Unified dynamics for microscopic and macroscopic systems,” Physical review D 34, 470 (1986b).
  68. LE Ballentine, “Failure of some theories of state reduction,” Physical Review A 43, 9 (1991).
  69. Philip Pearle, James Ring, Juan I Collar,  and Frank T Avignone, “The csl collapse model and spontaneous radiation: an update,” Foundations of physics 29, 465–480 (1999).
  70. Angelo Bassi, Emiliano Ippoliti,  and Bassano Vacchini, “On the energy increase in space-collapse models,” Journal of Physics A: Mathematical and General 38, 8017 (2005).
  71. Stephen L Adler, “Lower and upper bounds on csl parameters from latent image formation and igm heating,” Journal of Physics A: Mathematical and Theoretical 40, 2935 (2007).
  72. Kinjalk Lochan, Suratna Das,  and Angelo Bassi, “Constraining continuous spontaneous localization strength parameter λ𝜆\lambdaitalic_λ from standard cosmology and spectral distortions of cosmic microwave background radiation,” Physical Review D 86, 065016 (2012).
  73. Stefan Nimmrichter, Klaus Hornberger,  and Klemens Hammerer, “Optomechanical sensing of spontaneous wave-function collapse,” Physical review letters 113, 020405 (2014).
  74. Mohammad Bahrami, Angelo Bassi,  and Hendrik Ulbricht, “Testing the quantum superposition principle in the frequency domain,” Physical Review A 89, 032127 (2014a).
  75. Franck Laloë, William J Mullin,  and Philip Pearle, “Heating of trapped ultracold atoms by collapse dynamics,” Physical Review A 90, 052119 (2014).
  76. Mohammad Bahrami, M Paternostro, Angelo Bassi,  and H Ulbricht, “Proposal for a noninterferometric test of collapse models in optomechanical systems,” Physical Review Letters 112, 210404 (2014b).
  77. Daniel Goldwater, Mauro Paternostro,  and PF Barker, “Testing wave-function-collapse models using parametric heating of a trapped nanosphere,” Physical Review A 94, 010104 (2016).
  78. Antoine Tilloy and Thomas M Stace, “Neutron star heating constraints on wave-function collapse models,” Physical Review Letters 123, 080402 (2019).
  79. Sandro Donadi, Kristian Piscicchia, Catalina Curceanu, Lajos Diósi, Matthias Laubenstein,  and Angelo Bassi, “Underground test of gravity-related wave function collapse,” Nature Physics , 1–5 (2020).
  80. Ludovico Lami, Julen S. Pedernales,  and Martin B. Plenio, “Testing the quantum nature of gravity without entanglement,”   (2023), arXiv:2302.03075 [quant-ph] .
  81. Serhii Kryhin and Vivishek Sudhir, “Distinguishable consequence of classical gravity on quantum matter,”  (2023), arXiv:2309.09105 [gr-qc] .
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.